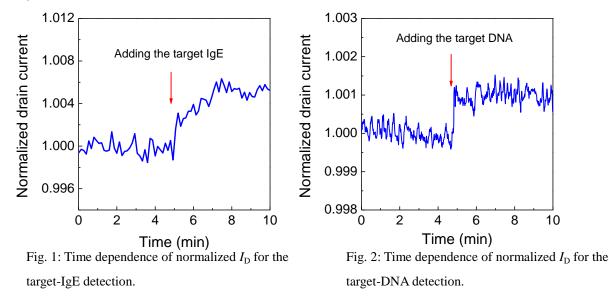
27p-G12-44

CVD 合成グラフェンを用いたセンサアレイ

Sensor Array Based on CVD-synthesized Graphene

阪大産研¹ 九大先導研² M. Z. Nursakinah¹、 $^{\circ}$ 大野恭秀¹、岡本翔伍¹、前橋兼三¹、河原憲治²、

吾郷浩樹²、松本和彦¹


ISIR, Osaka Univ.¹ IMCE, Kyushu Univ.² M. Z. Nursakinah¹, ^OY. Ohno¹, S. Okamoto¹,

K. Maehashi¹, K. Kawahara², H. Ago², and K. Matsumoto¹

E-mail: ohno@sanken.osaka-u.ac.jp

The monolayer of hexagonally packed carbon atoms named graphene has been known for its remarkable mechanical and electronic properties which have triggered a tremendous potential in the application of sensors. [1] As compared to mechanical-exfoliation graphene, chemical vapor deposition (CVD)-synthesized graphene is a promising method in synthesizing large-scale area of graphene thus offers an advantage of controlling the size and the position of graphene. This contributes to the fabrication of graphene field-effect transistor (FET) array for chemical and biological sensing.

The graphene sheet was synthesized by CVD on a copper/sapphire substrate [2] and then was transferred onto a Si substrate with 300-nm-thick thermally grown SiO₂ layer for the sensing application. The source and drain electrodes were formed by the conventional photolithography and lift-off method. The characteristics of the device were evaluated by detecting immunoglobulin E (IgE) and DNA target using the graphene FET array chip. For experimental setup, we attached silicone chamber to the substrate and used Ag/AgCl electrode as reference electrode. Firstly, anti-IgE aptamer and DNA-probe were separately immobilized onto the graphene channels using 1-pyrenebutanoic acid succinimidyl ester (linker) on the same chip. The sensing characteristics of this device were measured in real time using a semiconductor parameter analyzer. For IgE detection, the drain current increases after the introduction of IgE (Fig. 1), indicating that the IgE molecules were detected by the aptamer-modified graphene-FET. Similar result was observed for DNA detection (Fig. 2) indicating the target DNA was detected by the probe-DNA-modified graphene FETs on the same chip and the CVD-synthesized graphene is useful for the fabrication of multiplex hand-held chemical and biological sensors.

[1] S. Okamoto et al. JJAP 51 (2012) 06FD08. [2] C. M. Orofeo et al., Carbon 50 (2012) 2189.