MBE による (Cd, Mn) Te 自己形成ドット作製における発光特性の改善 Improvement of optical properties of (Cd,Mn)Te self-assembled dots grown by MBE

筑波大院数理物質 ¹, ^O古田 敦 ¹, 中澤 文生 ¹, 金澤 研 ¹, 黒田 眞司 ¹ Grad. School of Pure & Appl. Sci., Univ. Tsukuba ¹, [°] Atsushi Koda ¹, Fumio Nakazawa ¹, Ken Kanazawa ¹, Shinji Kuroda ¹, E-mail: s-koda@ims.tsukuba.ac.jp

【はじめに】II-VI 族ベース希薄磁性半導体の(Cd,Mn)Te の量子ドットにおいては磁気ポーラロン効果の増大[1]や単一 Mn スピンの振舞い[2]などの特異な現象が明らかにされている。母体の CdTe ドットの作製は格子不整合基板上へのヘテロエピタキシーにおける自己形成により可能であるが、Mn を高濃度に添加した(Cd,Mn)Te ドットの作製は容易ではなかった。我々はこれまで GaAs(001) 基板上に厚さ $0.7\mu m$ 程度の ZnTe 緩衝層を積層し、その表面上への(Cd,Mn)Te の積層によりドット作製を試みてきたが[3]、ZnTe 緩衝層の厚さが十分でなく、S-K モードによるドットの自己形成でMn 組成が高く強い発光を保つドットの作製は困難であった。そこで今回我々は ZnTe 緩衝層を厚くして、GaAs との格子不整合による歪が完全に緩和された ZnTe 表面上に(Cd,Mn)Te を積層することで、高い Mn 組成と強い発光を両立したドット作製を試みた。また並行して ZnTe 基板を用いたドット試料の作製も行った。

【実験】結晶成長は MBE により行い、基板として GaAs(001)または ZnTe(001)単結晶を用いた。 GaAs 基板の場合は ZnTe 緩衝層を従来の $0.7\mu m$ より厚い $4\mu m$ 積層し、その上に(Cd,Mn)Te を 7.5ML 積層してアモルファス Te の着脱を行う手法[4]によりドットの自己形成を促進した。 Mn の分子線供給量は Cd に対して一定の割合 Mn/Cd=0.03 に保ち、基板温度 T_S は $240\sim330^\circ C$ の間で変化させた。 ZnTe 基板の場合は、 ZnTe 層を $0.7\mu m$ 積層した上に同様の手法でドットを作製した。 いずれの場合も光学測定用の試料はドット表面に ZnTe キャップ層を約 30nm 積層し、ファラデー配置で磁場中の PL 測定を行った。

【結果】まず、GaAs 基板上に作製した Mn を添加していない CdTe ドットでは、ZnTe 緩衝層の厚さを $0.7\mu m$ から $4\mu m$ に増加させることで PL 発光強度は大幅に増加し、下地層によるドットの光学特性の改善が確認された。Fig.1 は ZnTe 緩衝層の厚さが $4\mu m$ の場合に Mn/Cd=0.03, T_8 = 300° C で成長した(Cd,Mn)Te ドットの磁場中 PL で、2.05eV 付近のピークがドットに束縛された励起子からの発光で、 $1.7\sim1.9eV$ および 2.1eV 付近のピークは ZnTe 層からの発光と考えられる。Fig.2 に同じ Mn/Cd=0.03 で T_S の異なる値で成長したドットからの発光エネルギーの磁場によるシフト及び Brillouin 関数によるフィッティングとその結果得られた有効 Mn 組成 x_{eff} を示す。このように GaAs 基板上の ZnTe 緩衝層を厚くすることで、Mn 添加量が多い場合でも比較的強い発光が得られ、また、ZnTe 基板を用いた場合も同様の結果となり、下地層による発光特性改善の効果が明らかになった。

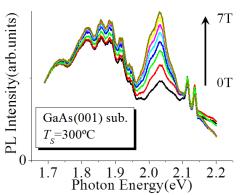


Fig.1 PL spectra at 2K of (Cd,Mn)Te self-assembled dots grown on GaAs substrate at Mn/Cd=0.03 and T_s =300°C.

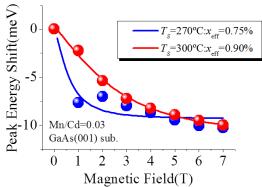


Fig.2 The shift of PL peak energy against magnetic field of (Cd,Mn)Te self-assembled dots grown on GaAs(001) substrate.

[1] Y. Terai *et al.*, APL **76**, 2400 (2000). [2] L. Besombes *et al.*, PRL **93**, 207403 (2004). [3]中村 他、第 59 回 応用物理学関係連合講演会 17p-DP7-2 (2012). [4] F. Tinjod *et al.*, JAP **95**, 102 (2004).