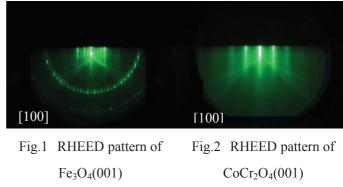
27p-PB1-4

Fabrication of Fe₃O₄/Al₂O₃/Fe and Fe₃O₄/CoCr₂O₄/Fe tunnel junctions

Hokkaido University, Yuya Matsuda, Kazuya Tate, ^ONozomi Takahashi, Taro Nagahama, Toshihiro Shimada E-mail: nagahama@eng.hokudai.ac.jp

[Introduction] In recent electronics industry, the spintronics is a crucial technique which evolves the memories from volatile to non-volatile. In order to realize the high-density non-volatile memory, it is necessary to develop a material which has a high spin polarization. Magnetite(Fe₃O₄) is a half-metallic ferromagnetic material, which has 100% spin-polarization, with a high Curie temperature of 860K [1]. However, the large magnetoresistance expected from high spin polarization of Fe₃O₄ has not been obtained [2]. In this study, we fabricated high-quality Fe₃O₄ epitaxial film and the tunnel junction films which have a barrier layer of Al₂O₃ or CoCr₂O₄. CoCr₂O₄ has a spinel structure and the lattice parameter is almost same as Fe₃O₄ [3].


[Experiment] Samples were fabricated by an MBE system. The sample structures were MgO(001) or MgO(110) substrate / MgO / Fe₃O₄ / Al₂O₃ / Fe, MgO(001) or MgO(110) / Fe₃O₄ / CoCr₂O₄ / Fe. The Fe₃O₄ film was formed by reactive deposition at a T_{sub} of 300°C in an O₂ atmosphere. Then annealed at a T_a of 600°C for 30 minutes in an O₂ atmosphere. Partial pressure of O₂ was 4×10^{-4} Pa. CoCr₂O₄ / thin film on the Fe₃O₄(100) was formed at a T_{sub} from 60°C to 400°C. The epitaxial growth and the surface structure were observed by RHEED and AFM.

[Results] As shown in Fig.1, the RHEED pattern of $Fe_3O_4(100)$ showed a clear streak pattern and Laue rings were observed. The surface roughness, R_a , was estimated 0.12nm by AFM measurement. Therefore, the $Fe_3O_4(100)$ layer was considered to be a high-quality and flat epitaxial film. With respect to magnetic properties, clear magnetic hysteresis curves were obtained by M-H measurements at room temperature. Fig.2 shows the RHEED pattern of $CoCr_2O_4$ barrier grown on $Fe_3O_4(100)$. After reactive deposition at a T_{sub} of 400°C in an O_2 atmosphere, the $CoCr_2O_4$ film was annealed at a T_a of 400°C for 3 minutes in the O_2 radical atmosphere. The pattern of $CoCr_2O_4(100)$ showed clear streak pattern. The surface roughness

Ra was 0.23nm.

[References]

- [1] A. Yanase and K. Siratori, J. Phys. Soc. Jpn.53, 312 (1984).
- [2] H. Matsuda *et al*, Jpn. J. Appl. Phys. 41pp. L387-L390 (2002)
- [3] G.Hu and Y.Suzuki, Phys. Rev. Lett. 89, 276601 (2002)

