水素含有 DLC(ta-C:H および a-C:H)膜の TDS 分析

TDS Analysis of Hydrogenated DLC (ta-C:H and a-C:H) films 豊橋技科大¹, 伊藤光学工業², オンワード技研³, 日立ツール⁴ ^O田上 英人¹, 角口 公章¹, 須田 善行¹, 滝川 浩史¹, 神谷 雅男², 瀧 真³, 長谷川 祐史³, 辻 信広³, アブスアイリキ サーレ⁴ Toyohashi Univ. Technol.¹, Itoh Opt. Ind. Co., Ltd.², Onward Ceramic Coating Co., Ltd.³, Hitachi Tool Eng., Ltd.⁴ ^oHideto Tanoue¹, Tomoaki Kadoguchi¹, Yoshiyuki Suda¹, Hirofumi Takikawa¹, Masao Kamiya²,

Makoto Taki³, Yushi Hasegawa³, Nobuhiro Tsuji³, Saleh Abusuilik⁴

E-mail: tanoue@ee.tut.ac.jp

種々の DLC (a-C:H, ta-C:H, a-C, ta-C) 膜に 関し,耐熱性を把握するため,昇温脱離質量 (TDS)分析と加熱に伴う膜構造の変化⁽¹⁾に 関する研究を進めている。これまで,a-C:H 膜 の TDS 分析における昇温速度の影響を調べた⁽¹⁾。しかしながら,膜密度の違いにおける脱 離ガスの違いおよび脱離温度について検討し ていない。本研究では,水素含有量がほぼ同じ で膜密度が異なる,つまり sp³/sp²比が異なる 2 種類の DLC 膜(a-C:H 膜;膜密度:1.7 g/cm³, 水素含有量:33 at.%, ta-C:H 膜;膜密度:2.0 g/cm³,水素含有量:27 at.%)を比較し,熱安 定性における膜密度の影響について検討した。

T-FAD 装置⁽²⁾を用い、C₂H₂ (20 ml/min)を 導入して a-C:H 膜を, H₂ (20 ml/min)を導入 して ta-C:H 膜を作製した⁽³⁾。基板には, p型 Si (100) 基板 (10 mm×10 mm, 厚さ 525±25 µm,抵抗率 1~10 Ω ·cm)を用いた。TDS 分析 は,前回と同じ自作装置⁽¹⁾を用い、トレンド モードで行った。計測質量は、膜から放出され る水素と炭素に関する 20 個とした。昇温速度 は 1, 5, 10, 20, 60°C/min の 5 点,到達温度 は 1000°C (到達温度での保持時間:0 min) 一 定とし、雰囲気圧力は 2×10⁴ Pa 以下(導入ガ スなし)とした。

Fig.1 に a-C:H 膜と ta-C:H 膜における昇温速 度が 1℃/min 時の TDS 分析結果からピークを 有するガスを示す。同図から,放出ガス種にほ とんど違いはなかった。しかしながら,CH 結 合に関する脱離ガス量は ta-C:H 膜のほうが少 ないことがわかった。各ガスに対し外挿法を用 いて⁽¹⁾0℃/min の時の温度を求めたところ, a-C:H 膜ではそれぞれ約 560℃,約 530℃,お よび約 530℃ であった。これに対し,ta-C:H 膜 では約 610℃,約 600℃,および約 600℃ と a-C:H 膜と比較して高くなった。以上から,ta-C:H 膜

Fig.1 Desorption gas spectra from a-C:H and ta-C:H.

は膜密度が高い,つまり sp³結合が多いため熱 安定性が高いことを示している。従って,膜密 度が脱離ガス量および脱離温度にどのように 関係するかが明らかとなった。

謝辞 本研究の一部は,科学研究費助成金事業,および豊橋 技術科学大学 VBL プロジェクト研究などの支援を受けて行 われた。

- 【文献】 (1) 角口,他:平成24年度電気関係学会東海支部連合大会 講演論文集,G2-2(2012)
- (2) H. Takikawa, et al.: Surf. Coat. Technol., **163-164**, 368-373 (2003)
- (3) M. Kamiya, et al.: Vacuum, 83, 510-514 (2009)