Epitaxial growth of ferromagnetic semiconductor Ga_{1-x}Mn_xAs films on Ge(001) substrate

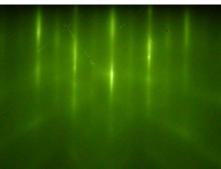
AIST Spintronics Research Center¹, Meiji University²

[°]Yuki Sato^{1,2}, Aurélie Spiesser¹, Hidekazu Saito¹, Shinji Yuasa¹, Koji Ando¹, and Noboru Miura²

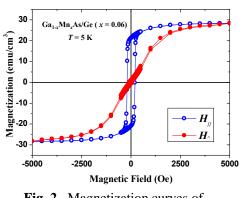
E-mail: y.-satou@aist.go.jp

Fabrication of heteroepitaxial structures between $Ga_{1-x}Mn_xAs$ and group IV semiconductors should be an important technology for developing III-V/VI hybrid spintronic devices. Zhao *et al.* and Uchitomi *et al.* have achieved the epitaxial growth of $Ga_{1-x}Mn_xAs$ on Si(001) substrates [1,2]. However, due to a rather large lattice mismatch (Δa) between GaAs and Si (4.1 %), a thick GaAs buffer layer of several hundred nm was necessary to grow the epitaxial $Ga_{1-x}Mn_xAs$ layer. The use of such a thick buffer layer would be detrimental to spin injection from $Ga_{1-x}Mn_xAs$ into Si. Here, we report the magnetic properties of epitaxial $Ga_{1-x}Mn_xAs$ film directly grown on Ge(001), where Ge has a very small Δa with GaAs (0.12 %).

 $Ga_{1-x}Mn_xAs$ films were directly grown on Ge(001) substrate at 250°C by molecular beam epitaxy method. Figure 1 shows the reflection high-energy electron diffraction (RHEED) image of a 65-nm thick $Ga_{1-x}Mn_xAs$ (x = 0.06). The image revealed clear streak patterns, showing that an epitaxial $Ga_{1-x}Mn_xAs$ layer was successfully grown. The lattice constant of the $Ga_{1-x}Mn_xAs$ layer was estimated from X-ray diffraction (XRD) peaks to be 0.5660 nm which is larger than that of Ge (0.5646 nm). This indicates that the $Ga_{1-x}Mn_xAs$ layer is under compressive strain.


The magnetization curves of the Ga_{1-x}Mn_xAs (x = 0.06) sample at 5 K is given in Fig. 2, with the magnetic fields applied parallel ($H_{//}$) and perpendicular (H_{\perp}) to the film plane, respectively. Clear hysteresis with a square shape was observed only for applying $H_{//}$, indicating that the easy axis of magnetization of the Ga_{1-x}Mn_xAs lies in the plane of the film. This is consistent with a compressive strain in the Ga_{1-x}Mn_xAs layer as proven by the XRD measurements. Curie temperature of the Ga_{1-x}Mn_xAs is 66 K which is an almost the same as a reference Ga_{1-x}Mn_xAs film grown on GaAs(001) (65 K). These demonstrate that Ga_{1-x}Mn_xAs/Ge is a promising structure for III-V/IV hybrid spintronics devices.

Acknowledgments


This work was supported by JSPS Postdoctoral Fellowship for Foreign Researcher (A. S.).

References

J. H. Zhao *et al.*, J. Cryst. Growth **237** (2002) 1349.
N. Uchitomi *et al.*, Appl. Surf. Sci. **216** (2003) 607.

Fig. 1 RHEED pattern of $Ga_{1-x}Mn_xAs$ (x = 0.06) film on Ge(001)

Fig. 2 Magnetization curves of $Ga_{1-x}Mn_xAs \ (x = 0.06)$ film grown on Ge(001) substrate.