28a-F2-10

マンガン酸化物薄膜の膜厚依存成長過程の原子スケール観察

Atomically resolved thickness-dependent growth processes of manganite thin films 東北大 WPI-AIMR¹, JST さきがけ² ○清水亮太¹, 大澤健男¹, 岩谷克也¹, 白木將¹, 一杉太郎^{1,2} Tohoku Univ.¹, JST-PRESTO² ○R. Shimizu¹, T. Ohsawa¹, K. Iwaya¹, S. Shiraki¹, T. Hitosugi^{1,2} E-mail: shimizu@wpi-aimr.tohoku.ac.jp

[序] ホールドープマンガン酸化物は金属-絶縁体転移,超巨大磁気抵抗,強磁性ハーフメタル等の 多彩な物性を発現し,ペロブスカイト系酸化物エレクトロニクスにおける有望な物質の1つであ る.しかしながら,劈開性の乏しさのためバルク単結晶による原子レベルの局所物性研究の報告 は少なく,その目的の遂行には原子レベルで制御された薄膜試料を準備する必要がある.酸化物 薄膜成長においては,これまで反射高速電子線回折の観察を通じたユニットセルレベルの知見が 知られているが,Si及びIII-V族半導体と比べると原子スケールにおける理解は乏しく,今後の極 薄膜や界面,人工超格子研究の発展に向けた課題となるのは自明である.近年我々の研究グルー プでは,原子レベルで制御されたSrTiO₃(001)-(√13 × √13)-R33.7°(以下,√13 × √13)表面を用 いることで,SrTiO₃薄膜のホモエピタキシャル成長の初期過程を原子スケールで明らかにするこ とに成功した[1].本講演ではこの原子制御基板表面を応用し,マンガン酸化物薄膜の成長の原子 スケール観察を報告する.

[実験と結果] 信光社製の Nb ドープ (0.05 wt%)SrTiO₃(001) ステッ プ基板をパルスレーザー堆積 (PLD) チャンバー (背圧: < 5×10⁻¹⁰ Torr) にて加熱処理を行い[1], ($\sqrt{13} \times \sqrt{13}$) 再構成表面を作製し た.その後 PLD 法により,基板温度 800°C,酸素分圧 1×10⁻² Torr,レーザーフルエンス 1.0 J/cm² にて La_{0.7}Ca_{0.3}MnO₃ 薄膜を 作製した.成膜後室温まで徐冷した後,大気暴露することなく 78 K にて STM 測定を行った [2].

成膜直前の SrTiO₃ 基板表面が Ti リッチな ($\sqrt{13} \times \sqrt{13}$)構造を 有するのに比して,膜厚 60 nm の La_{0.7}Ca_{0.3}MnO₃ 薄膜上では先 行研究同様に pseudo-cubic 構造における (1 × 1)格子が明瞭に観察 され [3],表面はバルクライクな MnO₂ 面で終端されていると考 えられる.さらに,この表面における構造及び組成の変化の様子 を調べるため膜厚を小さくして同様に観察したところ,ステップ エッジ付近に 0.2 nm 程度の高さを有する ($\sqrt{13} \times \sqrt{13}$)構造をと る領域が現れた.この ($\sqrt{13} \times \sqrt{13}$)構造の被覆面積は膜厚に対し て単調減少しており,SrTiO₃ 基板上での成膜においては余剰のカ チオンが薄膜全体に渡って拡散していることがわかる.この結果 は,極薄膜や界面,人工超格子の研究において,III-V族化合物半 導体同様に十分な膜厚のバッファー層を挿入する必要性を示唆し ている.

図: 膜厚 60 nm(上), 18 nm(下) の La_{0.7}Ca_{0.3}MnO₃ 薄膜の STM 像. 15×15 nm². 下図では (1×1) と $(\sqrt{13} \times \sqrt{13})$ 構造が共に観察され ている.

参考文献

[1]: R. Shimizu *et al.*, ACS Nano 5, 7967 (2011).
[3]: J. X. Ma *et al.*, Phys. Rev. Lett. 95, 237210 (2005).

[2]: K. Iwaya et al., Rev. Sci. Instrum. 82, 083702 (2011)