第60回応用物理学会春季学術講演会 講演予稿集(2013春 神奈川工科大学)

28a-G2-2

フルオロカーボンラジカルによるシリコン酸化膜 SiO,エッチングプロセスへの 量子分子動力学法アプローチ

Quantum Chemical Molecular Dynamics Approach to SiO₂ Etching Processes by Fluorocarbon Radicals

東北大院工¹, 東北大流体研², [°]伊藤 寿¹, 桑原 卓哉¹, 石川 岳志¹, 樋口 祐次¹, 尾澤 伸樹¹, 寒川 誠二². 久保 百司¹

Graduate School of Engineering, Tohoku Univ.¹, Institute of Fluid Science, Tohoku Univ.², [°]Hiroshi Ito¹, Takuya Kuwahara¹, Takeshi Ishikawa¹, Yuji Higuchi¹, Nobuki Ozawa¹,

Seiji Samukawa², Momoji Kubo¹

E-mail: hiroshi.ito@rift.mech.tohoku.ac.jp

半導体デバイス及び MEMS のさらなる小型化 の実現には、ナノスケールにおける高精度なエッ チング技術の開発が急務である.しかし、サイド エッチによる形状欠陥の発生や堆積物の過剰成 長, 選択比の低下が課題となっており, 高い異方 性と選択性を持つエッチングプロセスの確立が 必要とされている.高精度なプラズマエッチング プロセスの理論設計には,被エッチング材と反応 性分子,イオン,ラジカルの挙動及び化学反応過 程の原子レベルでの解析が必須である.本研究で は Tight-binding 量子分子動力学法を用い, SiO₂ モデルに対して任意の速度を与えたフルオロカ ーボンラジカルを照射するエッチングシミュレ ーションを行った. 照射ラジカルには CF4や C4F8 のプラズマ化により多く生成する CF2と CF3の2 種類を選択し、ラジカル種及び照射エネルギーが プロセスへ及ぼす影響について考察を行った.

CF2, CF3 ラジカルの照射エネルギーを 70 eV と してシミュレーションを行った結果, SiO2モデル 表面における C-O, Si-F 結合や CO, CO₂分子の 生成, Si-O 結合の切断によるエッチングホール の生成過程が観察された[1]. また, CF3照射にお いては SiF4 分子の生成も観察された. これらの 生成分子の種類は実験結果と合致している[2]. 次に,照射エネルギーが10,150 eV の場合につ いて解析を行った. Fig.1は150 eV における CF3 による SiO₂ エッチングのスナップショットであ る. Si-O 結合数の推移から, 10 eV の場合はジラ ジカルである CF2 が高い化学反応性により多く の Si-O 結合を切断し、CF3 よりもエッチングを進 行させることが分かった[Fig. 2(a)]. 一方, 150 eV の場合は、F原子の多いCF3の方が化学反応によ り多くの Si-O 結合切断と Si-F 結合生成を起こし ており、プロセス進行に有利であることが分かっ た[Fig. 2(b)]. これらの結果から、ラジカルの照 射エネルギーによって異なる化学反応過程を明 らかにし、エッチングメカニズムの解析に成功し た. 詳細については、当日発表を行う.

[1] H. Ito et al., Jpn. J. Appl. Phys., in press.

[2] E. A. Joseph et al., J. Vacuum Sci. A, 26, 545 (2008).

by CF₃ at 150 eV.

Fig. 1. Snapshot of the Fig. 2. Numbers of Si-O bonds during SiO₂ etching simulation the SiO₂ etching simulations by CF₂ and CF₃ at (a) 10 and (b) 150 eV.