28a-G2-4

Si(100)上界面遷移層内 Si 化学結合状態の ARPES による解明

Chemical Structures of Interfacial Transition Layer Formed on Si(100)

Revealed by Angle-Resolved Photoelectron Spectroscopy

東北大学未来科学技術共同研究センター¹,高輝度光科学研究センター²,

⁰諏訪智之 ¹, 寺本章伸 ¹, 室隆桂之 ²,木下豊彦 ²,大見忠弘 ¹, 服部健雄 ¹

NICHe, Toholu Univ.¹, JASRI²,

^oT. Suwa¹, A. Teramoto¹, T. Muro², T. Kinoshita², T. Ohmi¹, T. Hattori¹

E-mail: suwa@fff.niche.tohoku.ac.jp

[解析結果] 1) 乾燥酸素中 900 ℃ で形成した酸化膜(t = 2.14 ml)、1000 ℃ で形成した酸化膜(t = 1.41 ml)、1050 ℃ で形成した酸化膜(t = 1.67 ml)、900 ℃ で酸化後フォーミング・ガス中 400 ℃ で熱処 理(FGA)を行って得られた酸化膜(t = 2.27 ml)のいずれの場合も、第一組成遷移層(FCTL)はSi⁰、Si¹⁺、 Si^{µ+}、Si²⁺とから、第二組成遷移層(SCTL)はSi^{ν+}、Si³⁺、Si⁴⁺とから構成される[1]。ここに、t は CTL 上に形成された SiO₂層の膜厚を分子層(ml)で表した。2) 900 ℃ から 1050 ℃ への酸化温度(OT)の 上昇に伴う Si¹⁺量の増加は、OT が上昇すると SiO₂/Si 界面で(100)面の一部が(111)面に変化して界

Fig. 1 Internal TOA dependence of intensity ratios

面構造が安定化されることを示唆している[1]。3) FGA に よるβ-S 量の増加は Si-Si 結合から Si-H 結合への変化によ り説明できないので、β-Si が酸化により界面近傍のシリコ ン基板内に誘起される残留歪に起因する可能性が高い[1]。 OT の 1000 $^{\circ}$ から 1050 $^{\circ}$ への上昇によるβ-Si 量の増加は、 温度上昇によるこの残留歪の増加を示唆している[1]。なお、 β-Si は OT 範囲 900 $^{\circ}$ ~1050 $^{\circ}$ では同じ層に存在する[1]。 [1] T. Suwa et al.: to be published in JJAP.

Fig. 2 Composition of FCTL and SCTL