28a-G2-5

## Si (100) 基板表面極近傍の酸化誘起残留歪の光電子分光による検出

Detection of Oxidation-Induced Residual Stress in Si(100) Substrate by PES

東北大 NICHe<sup>1</sup>, 高輝度光科学研究センター<sup>2</sup>, 明大理工<sup>3</sup>

<sup>0</sup>諏訪智之<sup>1</sup>,寺本章伸<sup>1</sup>,大見忠弘<sup>1</sup>,室隆桂之<sup>2</sup>,木下豊彦<sup>2</sup>,

永田晃基<sup>3,a</sup>, 小椋厚志<sup>3</sup>, 服部健雄<sup>1</sup>

NICHe, Toholu Univ.<sup>1</sup>, JASRI<sup>2</sup>, School of Sci. & Technol. Meiji Univ.<sup>3</sup>, Research Fellow of JSPS<sup>4</sup>

<sup>°</sup>T. Suwa<sup>1</sup>, A. Teramoto<sup>1</sup>, T. Ohmi<sup>1</sup>, T. Muro<sup>2</sup>, T. Kinoshita<sup>2</sup>, K. Nagata<sup>3,4</sup>, A. Ogura<sup>3</sup>, T. Hattori<sup>1</sup>

E-mail: suwa@fff.niche.tohoku.ac.jp

[研究背景・目的] Si の酸化により誘起される Si(100)基板の残留歪に関する研究がこれまで数多く なされてきた。もし、Si と SiO<sub>2</sub>の膨張係数の違いのみにより生じるのであれば、当該残留歪は引 張歪となるはずである [1]。この予想に反して、小椋らは検出深さ 5 nm の UV 光励起ラマン分光 により Si 基板の表面近傍に圧縮歪が Si の酸化により誘起されることを見出した [2]。この小椋ら の発見と対比することにより、界面極近傍に局在する残留歪の存在する位置を角度分解光電子分 光により検出深さ約 2 nm の空間分解能でほぼ明らかにできたので報告する。

[測定結果] Si 基板からの Si 2p<sub>3/2</sub>スペクトルの一成分であるβ-Si と名付けたスペクトルの強度の界 面に局在するサブオキサイド Si<sup>1+</sup>のスペクトル強度に対する比の internal TOA 依存性の解析より、 Fig. 1 が得られる。この図に示す界面から 3 番目の Si 層に占めるβ-Si の量の酸化温度およびフォ ーミング・ガス中の熱処理(FGA)への依存性は、Fig. 2 に示すように、UV 光励起ラマン分光によ り検出された界面近傍の Si 基板の圧縮歪のそれと密接な関係がある。その結果 Si 基板の界面極近 傍の圧縮歪と密接な関係があると判明した界面から 3 番目の Si 層に占めるβ-Si の量は、Fig. 2 に



Fig. 1 Composition of transition layers in the Si substrate.

示すようにフォーミング・ガス中の熱処理に よりゼロとなることが注目される。a)学振特 別研究員、[参考文献] [1] E. Kobera et al.: J. Vac. Sci. Technol. B 4 (1986) 720. [2] M. Hattori et al.: ECS Trans. 19 (2009) 55.



