第60回応用物理学会春季学術講演会 講演予稿集(2013春 神奈川工科大学)

Be ドープ p 型 GaAs のスピン緩和の観測 (10-100 K) Observation of spin relaxation in Be-doped p-type GaAs (10-100 K) 早大先進理工¹, SINANO-CAS² ⁰浅香 尚洋¹, 石塚 俊裕¹, S. L. Lu², 竹内 淳¹ Waseda Univ.¹, SINANO-CAS² ^oN. Asaka¹, T. Ishizuka¹, S. L. Lu² and A. Tackeuchi¹ E-mail address: <u>night-wind.222@asagi.waseda.jp</u>

The experimental analyses of spin relaxation of ptype semiconductors have attracted considerable attention for the development of theories of spin relaxation mechanisms in semiconductors.¹ Here, we report spin relaxation times in an Be-doped bulk GaAs grown on GaAs substrate at 10-100 K by time-resolved spin-dependent photoluminescence (PL) measurement.

The sample contains a 577-nm-thick GaAs grown on GaAs substrate by Molecular Beam Epitaxy. The Be concentration is 8.1×10^{16} cm⁻³. The spin relaxation times were measured by time-resolved spin-dependent PL measurement at 10-100 K. In the time-resolved spin-dependent PL measurement, the spin polarized carriers were photoexcited by the circularly polarized femtosecond optical pulses generated from a Ti-sapphire laser. The excitation laser wavelength was tuned to 750 nm. The collected luminescence passes through an analyzer consisting of an achromatic quarter-wave plate and a linear polarizer arranged so that right- or left-circularly polarized emission can be selected. The spin-dependent PL is time-resolved using a streak camera with a time resolution of 15 ps.²

Figure 1 shows the time evolution of the spin-dependent PL at 10 K for the excitation power of 7 mW. The blue and red curves indicate the PL intensity of the same (I_+) and opposite (I_-) circular polarizations from the pump laser, respectively. Spin polarization was not observed at higher than 100 K. Figure 2 shows the time evolution of spin polarization at 10 K for the excitation power of 7 mW. The spin relaxation time was obtained to be 0.91 ns using a single exponential fitting. The observed spin relaxation time is close to that of Zn-doped p-type GaAs ($N_A = 2.0 \times 10^{17}$ cm⁻³) of 1.0 ns.³

The presence of carrier density and temperature dependence of the spin relaxation time was observed at 10-50 K. Bir-Aronov-Pikus process⁴ and Elliott-Yafet process^{5,6} seem to be effective as spin relaxation mechanism.

Fig.1 Time evolution of spin-dependent PL intensity at 10 K for the excitation power of 7 mW.

Fig.2 Time evolution of spin polarization at 10 K for the excitation power of 7 mW.

- ¹ G. Fishman et al., Phys.Rev.B. 16, 2 (1977).
- ² A. Tackeuchi et al., Appl. Phys. Lett. **84**, 3576 (2004).
- ³ K. Zerrouati et al., Phys. Rev. B. **37**, 1334 (1988).
- ⁴G. L. Bir et al., Symmetry and Strain-Induced Effects in Semiconductors, Wiley, **27** (1975).
- ⁵ R. J. Elliott: Phys. Rev. **96**, 266 (1954).
- ⁶ Y. Yafet: Solid State Phys. 14, 1 (1963).