Spin blocking effect in InGaAs／InAlAs double quantum wells due to Rashba spin－orbit coupling

Kobe Univ．${ }^{1}$ ，NTT Basic Research Lab．${ }^{2}$ ，NTT Photonics Lab．NTT Corp ${ }^{3}$ ，Hokkaido Univ ${ }^{4}$

${ }^{\circ}$ Satofumi Souma ${ }^{1}$ ，Matsuto Ogawa ${ }^{1}$ ，Yoshiaki Sekine ${ }^{2}$ ，Hiroki Sugiyama ${ }^{3}$ ， Shoichiro Yokota ${ }^{4}$ ，Takaaki Koga ${ }^{4}$
E－mail：ssouma＠harbor．kobe－u．ac．jp

We report our theoretical proposal of spin－blockade device using an $\mathrm{In}_{0.53} \mathrm{Ga}_{0.47} \mathrm{As}^{/} \mathrm{In}_{0.52} \mathrm{Al}_{0.48} \mathrm{As}$ double quantum well（ DQW ）structure，where the values of the Rashba spin－orbit parameter α_{R} are opposite in sign but equal in magnitude between the constituent quantum wells（QW）［1］．Figure 1（a）illustrates the proposed device based on the DQW structure，where each QW（QW1 and QW2），by itself，has an asymmetric confinement potential as shown in Fig．1（b）．Non－magnetic electrodes are attached to the QW1 of the DQW device at both the left and right ends，where the electric current is passed in the x direction． Our theoretical calculations show that the transmission of one spin（e．g．，spin－up）component can be blocked by tuning both the channel length of DQW and the magnitude of the externally applied in－plane magnetic field，which enables a spin－polarized current．Our experimental efforts toward realizing the proposed device is also underway［2］．This work was supported by JSPS KAKENHI Grant Number 23360001.
［1］T．Matsuura，S．Faniel，N．Monta，and T．Koga，Physica E 42， 2707 （2010）．
［2］T．Koga，T．Matsuura，S．Faniel，S．Souma，S．Mineshige，Y．Sekine，and H．Sugiyama，IEICE Trans． Electron．E95－C， 770 （2012）．

Fig．1．（a）Schematic illustration of the proposed spin－blocking device made of double quantum well．（b）An example of the effective potential profile in the DQW region for zero magnetic field． Spin－dependent energy eigenvalues for a given wave number \mathbf{k} are also shown．

