InAIN/AIN/GaN HEMTにおけるデバイス特性のInAINバリア層厚依存性

InAlN barrier thickness dependence of device performance for InAlN/AlN/GaN HEMTs

情報通信研究機構¹、富士通研究所² O山下 良美¹、渡邊 一世¹、遠藤 聡^{1,2}、笠松 章史¹、三村 高志^{1,2}

National Institute of Info. & Com. Tech. ¹
°Y. Yamashita ¹, I. Watanabe ¹, A. Endoh ^{1, 2}, A. Kasamatsu ¹ and T. Mimura ^{1, 2}
Fujitsu Lab. Ltd. ²
E-mail: yamasi@nict.go.jp

[はじめに] GaN HEMT は高周波パワーデバイスとして期待されており、ミリ波帯(30~300 GHz)で動作する高出力アンプ実現に向けた電流利得遮断周波数(f_T) や最大発振周波数(f_{max}) の向上を目指した研究が盛んに行われており、InAIN をバリア層として用いたデバイス構造に於いて f_T =370 GHz が報告されている f_T 0 InAIN をバリア層とする HEMT は、AlGaN バリア層のものと比べて高い二次元電子密度(f_T 0 が得られ、ドレイン電流(f_T 1 や f_T 1 f_{max} の増大が期待される。本報告では、InAIN/AIN/GaN HEMT におけるデバイス特性の InAIN バリア層厚依存性を検討した。

[実験] Fig. 1 にデバイス構造断面模式図を示す。サファイア 基板上に MOCVD 成長したエピ基板は、AIN スペーサ層厚を $0.8\,\mathrm{nm}$ 、 $\mathrm{In}_{0.18}\mathrm{Al}_{0.82}\mathrm{N}$ バリア層厚を $5\,\mathrm{nm}$ 、 $10\,\mathrm{nm}$ とした。作製したデバイス構造は、SiN $2.5\,\mathrm{nm}$ をゲート絶縁層とした MIS-HEMT である。

[結果] Table. 1 にホール測定結果とオーミックコンタクト抵抗値(R_C) を示す。InAlN バリア層を5 nm まで薄くしても N_S をほとんど減少させることなく電子移動度(μ) を向上できたため、シート抵抗(ρ_\square)および R_C を下げることができた。Fig. 2 に作製した HEMT (ソース・ドレイン電極間距離 $L_{sd}=0.75$ μ m, ゲート長 $L_g=45$ nm) のドレイン電圧 $V_d=3$ V における DC 特性を示す。InAlN バリア層厚の薄膜化により I_d と伝達コンダクタンス(g_m) は増加し、閾値電圧(V_t)と g_m ピークのゲート電圧はそれぞれ正方向にシフトした。また I_d の増加は、我々が今までに発表した AlGaN/GaN HEMT I_{2} , I_{3} と比較して I_{4} に発展あり高出力化が期待される。

Fig. 3 に RF 特性のゲート長依存性を示す。InAIN バリア層厚 5 nm は、同 10 nm と比べ短ゲート長領域で RF 特性の優位性が顕著である。更に、 L_g を 35 nm まで微細化することにより f_T = 224 GHz、 f_{max} = 207 GHz を達成した。InAIN バリア層の更なる薄膜化による高周波特性の向上が期待される。

[参考文献]

- [1] Y. Yue et al., IEEE Electron Device Lett. 33 (2012) 988.
- [2] 山下他、第 58 回応用物理学関係連合講演会 27a-P9-16
- [3] 山下他、第72回応用物理学会学術講演会1p-H-7

Fig.1 Schematic cross-sectional view of fabricated InAlN/AlN/GaN HEMT

Table.1 Hall measurement results and ohmic contact resistances

lr	AIN (nm)	Ns (cm ⁻²)	μ (cm²/V.s)	ρ _□ (Ω/□)	R _c (Ω.mm)
_	5	2.52×10 ¹³	1160	214	0.62
	10	2.83×10 ¹³	846	259	0.89

Fig.2 DC characteristics of the 45-nm-gate HEMTs with InAlN thickness of 5 and 10 nm

Fig.3 Lg dependence of f_T and f_{max} for the HEMTs with InAlN thickness of 5 and 10 nm