28p-G11-10

Fujitsu Lab. Ltd.²

InAlN/AlN/GaN HEMTにおけるデバイス特性のInAlNバリア層厚依存性

InAlN barrier thickness dependence of device performance for InAlN/AlN/GaN HEMTs 情報通信研究機構¹、富士通研究所² ⁰山下 良美¹、渡邊 一世¹、遠藤 聡^{1,2}、笠松 章史¹、三村 高志^{1,2}

National Institute of Info. & Com. Tech.¹ "Y. Yamashita¹, I. Watanabe¹, A. Endoh^{1,2}, A. Kasamatsu¹ and T. Mimura^{1,2}

E-mail: vamasi@nict.go.jp

[はじめに] GaN HEMT は高周波パワーデバイスとして期待 されており、ミリ波帯(30~300 GHz)で動作する高出力アンプ 実現に向けた電流利得遮断周波数(f_T) や最大発振周波数(f_{max}) の向上を目指した研究が盛んに行われており、InAIN をバリ ア層として用いたデバイス構造に於いて f_T = 370 GHz が報告 されている^[1]。InAIN をバリア層とする HEMT は、AlGaN バ リア層のものと比べて高い二次元電子密度(N_S) が得られ、ド レイン電流(I_d) や f_T , f_{max} の増大が期待される。本報告では、 InAIN/AIN/GaN HEMT におけるデバイス特性の InAIN バリア 層厚依存性を検討した。

[実験] Fig. 1 にデバイス構造断面模式図を示す。サファイア 基板上に MOCVD 成長したエピ基板は、AIN スペーサ層厚を 0.8 nm、In_{0.18}Al_{0.82}N バリア層厚を 5 nm、10 nm とした。作製 したデバイス構造は、SiN 2.5 nm をゲート絶縁層とした MIS-HEMT である。

[結果] Table. 1 にホール測定結果とオーミックコンタクト抵抗値(R_c)を示す。InAlN バリア層を5 nm まで薄くしても Ns をほとんど減少させることなく電子移動度(μ)を向上できた ため、シート抵抗(ρ_{\Box})および R_c を下げることができた。Fig. 2 に作製した HEMT (ソース・ドレイン電極間距離 L_{sd} = 0.75 μ m, ゲート長 L_g = 45 nm)のドレイン電圧 V_d = 3 V における DC 特性を示す。InAlN バリア層厚の薄膜化により I_d と伝達 コンダクタンス(g_m)は増加し、閾値電圧(V_{th})と g_m ピークのゲ ート電圧はそれぞれ正方向にシフトした。また I_dの増加は、 我々が今までに発表した AlGaN/GaN HEMT^{[2], [3]}と比較して 1.5 倍程度あり高出力化が期待される。

Fig. 3 に RF 特性のゲート長依存性を示す。InAlN バリア層 厚 5 nm は、同 10 nm と比べ短ゲート長領域で RF 特性の優位 性が顕著である。更に、 $L_g \&$ 35 nm まで微細化することによ り $f_T = 224$ GHz、 $f_{max} = 207$ GHz を達成した。InAlN バリア層 の更なる薄膜化による高周波特性の向上が期待される。 [参考文献]

[1] Y. Yue et al., IEEE Electron Device Lett. 33 (2012) 988.

[2] 山下他、第 58 回応用物理学関係連合講演会 27a-P9-16

[3] 山下他、第72回応用物理学会学術講演会 1p-H-7

Fig.1 Schematic cross-sectional view of fabricated InAIN/AIN/GaN HEMT

Table.1 Hall measurement results and ohmic contact resistances

InAIN (nm) Ns (cm⁻²) μ (cm²/V.s) $\rho_{\Box}(\Omega/\Box)$ R_c (Ω .mm)

5	2.52×10 ¹³	1160	214	0.62
10	2.83×10 ¹³	846	259	0.89

Fig.2 DC characteristics of the 45-nm-gate HEMTs with InAlN thickness of 5 and 10 nm

HEMTs with InAlN thickness of 5 and 10 nm