Schottky characteristics dependency on the polarity of PEDOT:PSS/MgZnO interface
Shizuoka Univ., RIE, 1S. K. Mohanta, N. Ohmura, A. Nakamura, and J. Temmyo
E-mail: skmohanta135@gmail.com

I. Introduction
Recently, Schottky diodes on MgZnO have attracted considerable attention for the application in ultraviolet photodetectors and photovoltaic devices.1,2 However, it has been difficult to achieve high quality Schottky using metal electrode, which encouraged to find alternative electrode such as polymer, (PEDOT:PSS)3,4 We reported the Schottky contacts to MgZnO:N using metal and PEDOT:PSS electrodes, and the PEDOT:PSS is suitable electrode to nonpolar MgZnO:N with minimum dipole effect.4 The present study demonstrates the details of the effect of interface polarity on Schottky characteristic of PEDOT:PSS/MgZnO.

II. Experiment
The polar \{ wurtzite (w-), rock salt (r-), mixed (w+r-)\}, polar/nonpolar (w-), and nonpolar(w-) MgZnO films were grown on a- and r-sapphire substrates using RPE-MOCVD.5,6 The Schottky diodes were fabricated using standard photolithography with Ohmic contact Ti/Au deposited by electron beam evaporation, and Schottky contact PEDOT:PSS deposited by spin coating.4 The morphology and crystal structures were studied by SEM and XRD. The concentrations were measured by Hall-effect using van der Pauw configuration and current voltage (I-V) characteristics were performed after 5 min in dark using semiconductor parameter analyzer.

III. Results and discussion
Figure 1 shows the morphology and grain sketch of MgZnO films. The polar(w-) MgZnO was c-axis oriented with columns diameter 60 nm. The morphology becomes flat for polar(w+r-) MgZnO film and smooth surface for rock salt MgZnO. The polar/nonpolar(w-) MgZnO was both c- and a-axis oriented with columns (100 nm) and sheets (220 nm), while nonpolar(w-) film was a-axis oriented with sheets 320 nm. The concentration of polar(w-), polar/nonpolar(w-), and nonpolar(w-) MgZnO films are \(10^{17}\), \(10^{18}\), and \(10^{18}\) cm\(^{-3}\), respectively. The concentration of w+r- and r-MgZnO films are not known due to the limitation of Hall set up.

Figure 2 shows the J-V curves of PEDOT:PSS/MgZnO Schottky contacts, in which the rectifying characteristics depend strongly on polarity of the films. The rectification ratio of order 5 was observed for w+r-MgZnO. The higher current density of 2x10\(^{-3}\) A/cm\(^2\) at -3V for polar(w-) MgZnO is due to the high leakage current associated with columnar grains. The rock salt MgZnO with smooth surface showed lowest current density 1x10\(^{-8}\) A/cm\(^2\) at -3V i.e. low leakage current. The minimum current at -Ve voltage for all diodes for sweep -3V to +3V was due to the formation of built-in dipole at the interface, in accordance with Bardeen model.1 The nonpolar(w-) MgZnO showed minimum dipole effect and improved rectifying characteristics.4 The minimum current was at +Ve voltage for sweep +3V to -3V, and indicated the persistent photo-conductivity (PCC) effects.7 Therefore, the nonpolar and smooth interface of MgZnO films is vital for good rectification characteristics of Schottky diodes.

IV. References

© 2013 年 応用物理学会