High Mobility Ge CMOS devices with 0.7 nm Ultrathin EOT using HfO$_2$/Al$_2$O$_3$/GeO$_x$/Ge Gate Stacks Fabricated by Plasma Post Oxidation

Rui Zhang, J. C. Lin, P. C. Huang, N. Taoka, M. Takenaka and S. Takagi

School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan.

Tel: +81-3-5841-6733. E-mail: zhang@mosfet.t.u-tokyo.ac.jp

Introduction Ge MOSFETs have been attracting a lot of interest for further improvement of the CMOS performance [1]. For high performance Ge MOSFETs, a gate stack with both low D_0 and thin EOT is mandatory [2]. A plasma post oxidation (PPO) method has been purposed by using ECR oxygen plasma to fabricate Al$_2$O$_3$/GeO$_x$/Ge gate stacks with low D_0 at 10^{11} cm$^{-2}$V$^{-1}$s$^{-1}$ order and thin EOT of \sim1 nm [3-5]. However, further EOT reduction of the Al$_2$O$_3$/GeO$_x$ gate stacks is difficult, due to the relatively small permittivity of Al$_2$O$_3$ (7~9) and GeO$_x$ (~5.5). In this research, HfO$_2$/Al$_2$O$_3$/GeO$_x$/Ge gate stacks with EOT of \sim0.7 nm are fabricated using the PPO method assisted by a 0.2-nm-thick Al$_2$O$_3$ layer between HfO$_2$ and Ge, with maintaining low D_0. The high mobility Ge (100) p- and n-MOSFETs using these gate stacks are also demonstrated.

Experiments The active areas were defined by etching SiO$_2$ field oxides formed on Ge (100) substrates. Subsequent to the sacrificial oxidation, the HfO$_2$ (2.2 nm)/Al$_2$O$_3$ (0.2 nm)/GeO$_x$/Ge structures were prepared by 300 °C ALD and PPO for different times at RT. PDA was carried out at 400 °C for 30 min in N$_2$. TIN was deposited and ion implantation was done to form S/D for both p- and n-MOSFETs. After the activation annealing, Ni S/D contact metals were sputtered and the Al back contact was formed by thermal evaporation.

Results and discussion Fig. 1 shows a cross section TEM image of the HfO$_2$/Al$_2$O$_3$/GeO$_x$/Ge gate stacks. It is found that a 0.35-nm-thick GeO$_x$ interfacial layer (IL) was formed with a sharp GeO$_x$ interface after PPO (2.2 nm)/Al$_2$O$_3$/GeO$_x$/Ge interface. Without inter-mixing with the HfO$_2$ layer, which has also been confirmed by AR-XPS measurements (data not shown). With this gate stack, low D_0 of 2×10^{11} cm$^{-2}$V$^{-1}$s$^{-1}$ is revealed under EOT of 0.76 nm.

The I_D-V_g characteristics shown in Fig. 2 are taken from the Ge p- and n-MOSFETs having an HfO$_2$/Al$_2$O$_3$/GeO$_x$/Ge gate stack with 15 s’ PPO. Normal operations are confirmed for the p- and n-MOSFETs with an on/off ratio of \sim104 and an S factor of 85 mV/dec for pMOSFET, and an on/off ratio of \sim103 and an S factor of 80 mV/dec for nMOSFET. The mobility of the Ge p- and n-MOSFETs with different types of gate stacks, evaluated by the split C-V method, is shown in Fig. 3 and Fig. 4, respectively. It is found that with the PPO HfO$_2$/Al$_2$O$_3$/GeO$_x$/Ge gate stack, the Ge pMOSFET exhibits the hole mobility much higher than the Si universal one. The mobility with 0.76 nm EOT is comparable to or even higher than that of ~20-nm-thick thermal oxidation GeO$_2$/Ge gate stack [6]. For the Ge nMOSFET, the electron mobility is comparable to the Si universal one and exceeds it in high N_d region. The much higher mobility in the HfO$_2$/Al$_2$O$_3$/GeO$_x$/Ge gate stack than those in the direct HfO$_2$/Ge and the HfO$_2$/Al$_2$O$_3$/Ge interfaces indicates that the formation of the GeO$_2$/Ge interface is a key for realizing high mobility Ge p- and n-MOSFETs. The peak mobility of 546 and 689 cm2/Vs are obtained for the Ge p- and n-MOSFETs with EOT of 0.76 nm, which are the highest reported peak mobility for Ge CMOS devices with sub-nm ultrathin EOT.

Conclusion The superior HfO$_2$/Al$_2$O$_3$/GeO$_x$/Ge gate stacks were fabricated by applying the PPO method for HfO$_2$/Al$_2$O$_3$/Ge gate structures. These gate stacks exhibit ultrathin EOT of down to ~0.7 nm and D_0 of 10^{11} cm$^{-2}$V$^{-1}$s$^{-1}$ order. The Ge (100) p- and n-MOSFETs with these gate stacks have been demonstrated with superior electrical properties. As a result, the record high hole and electron mobility of 546 and 689 cm2/Vs have been realized under EOT of 0.76 nm for Ge p- and n-MOSFETs, respectively.

Acknowledgement This work was supported by Grant-in-Aid for Scientific Research (No. 23246058) from MEXT of Japan.

Fig. 1: TEM image of O$_2$ (2.2 nm)/Al$_2$O$_3$ (0.2 nm)/Ge structure with a 500 W PPO for 15 s.

Fig. 2: I_D-V_g curve of the Ge p- and n-MOSFET with the HfO$_2$/Al$_2$O$_3$/GeO$_x$/Ge gate stack having 15 s’ PPO.

Fig. 3: Mobility of Ge pMOSFETs having different MOS interfaces.

Fig. 4: Mobility of Ge nMOSFETs having different MOS interfaces.