極薄 GeO_X 界面層を有する Y₂O₃/Ge ゲートスタックの低温形成 Low-temperature fabrication of Y₂O₃/Ge gate stacks with ultrathin GeO_X-interlayer

九大・大学院総合理工学府¹, 九大・産学連携センター², 学振特別研究員³ 永冨 雄太¹, 小島 秀太¹, 亀沢 翔¹, 山本 圭介 ^{2,3}, 王 冬¹, 中島 寛² I-Eggs, Kyushu Univ.¹, KASTEC, Kyushu Univ.² JSPS Research Fellow ³: Y. Nagatomi¹, S. Kojima¹, S. Kamezawa¹, K. Yamamoto^{2,3}, D. Wang¹, H. Nakashima² E-mail: 2ES12029@s.kyushu-u.ac.jp

1. はじめに

近年、Si よりも高いキャリア移動度を有する Ge-MOSFET の研究開発が加速している。しかし、Ge は Si よりもドーパントの拡散係数が大きく固溶度が低いため、高濃度で浅い接合の S/D 形成は困難である。この問題を解決するため、我々はメタル S/D 型 MOSFET に着目している。既に、電子障壁の低い TiN コンタクト技術を確立し[1]、TiN を S/D に用いたメタル S/D 型の n-MOSFET 動作を実証している。 [2] この MOSFET をゲートラストプロセスで作製する場合、TiN-S/D 形成後のゲートスタックは 400℃ 以下で形成しなければならない。今回、high-k/Ge スタックに於いて界面欠陥が Y で終端されるとの報告がある Y_2O_3 に着目し[3]、 Y_2O_3 /Ge ゲートスタックの低温形成を試みたので、その結果を報告する。

2. 試料作製

n-および p-形(100)Ge 基板の抵抗率はそれぞれ 0.29 および 0.38 Ω cm である。Ge 基板を化学洗浄後、犠牲酸化を行った。試料を PVD チャンバーに搬入し、真空アニールにより GeO_2 を完全に揮発させ、表面クリーニングを行った。その後、同一真空中で低パワー($P_{rf}=5$ W)の O_2 添加 rf スパッタリング(ターゲット: Y_2O_3)を室温で行った。この試料の XPS スペクトルを Fig. 1(a)に示す。パワーが低いため、 Y_2O_3 のスパッタリングは行われず、Ge 表面に GeO_X が形成されたことが分かる。次に、 $P_{rf}=20$ W とし、 O_2 添加無しで 3 nm- Y_2O_3 を室温で堆積した。この試料の XPS スペクトルを Fig. 1(b)に示す。 GeO_X に対応する信号が低エネルギー側にシフトしていることから、 Y_2O_3 が GeO_X と反応し、 $YGeO_X$ が形成されたことが分かる。その後、同一チャンバー内で 400° C-30min の真空アニールを施した。この試料の XPS スペクトル[Fig. 1(c)]から、 $YGeO_X$ の組成に大きな変化がないことが分かる。最後にゲート電極として、TiN を堆積して 350°C-20min の PMA を行い、Al の堆積後に電極加工を行った。こうして Al(100 nm)/TiN(50 nm)/ Y_2O_3 / $YGeO_X$ / GeO_X

3. 電気特性

試作した MOSCAP の C-V 特性(周波数: 1MHz)を Fig. 2 に示す。n-および p-MOSCAP は典型的な MOS 特性を示した。この C-V 特性から得られた等価 SiO_2 換算膜厚(EOT)、フラットバンド電圧(V_{fb})、 ヒステリシス(HT)を Fig. 2 中に示す。一定温度 DLTS で得られた界面準位密度(D_{it})のエネルギー分布を Fig. 3 に示す。図中には、1 MV/cm のストレス電界印加の結果も示す。禁制帯中央付近で $5x10^{11}$ cm⁻²eV⁻¹、価電子帯近傍で $3x10^{13}$ cm⁻²eV⁻¹、伝導帯近傍で $2x10^{12}$ cm⁻²eV⁻¹であった。伝導帯側で低い D_{it} を示すことに加えてスロートラップも少ないことから、n-MOSFET のゲートとして有望である。 [参考論文] [1] K. Yamamoto et al., JJAP 51, 070208 (2011), [2] K. Yamamoto et al., APEX 4, 051301 (2011), [3] K. Kita et al., Appl. Surf. Sci. 254,

Fig. 1. XPS spectra of samples with (a) O_2 irradiation, (b) Y_2O_3 sputtering, and (c) annealing at 400° C.

Fig. 2. C-V characteristics at 1 MHz for n- and p-MOSCAPs with TiN/Y₂O₃/YGeO_X/GeO_X/Ge structures.

Fig. 3. D_{it} distributions for n- and p-MOSCAPs with TiN/Y₂O₃/YGeO_x/GeO_x structures