## Ge 基板のラジカル酸化で形成した GeO2 膜質の熱処理による変化

Thermal annealing effect on the quality of  $GeO_2$  film formed by radical oxidation of Ge

## 東大院工, JST-CREST <sup>O</sup>宋宇振, 李忠賢, 西村知紀, 長汐晃輔, 鳥海明

## The Univ. Tokyo, JST-CREST, <sup>°</sup>W. Song, C. H. Lee, T. Nishimura, K. Nagashio, A. Toriumi E-mail: song@adam.t.u-tokyo.ac.jp

**[Introduction]** Low-temperature radical oxidation of Ge has been studied to achieve the superior  $Ge/GeO_2$ interface due to higher reactivity of O radical [1,2]. In previous study, we have investigated the  $GeO_2$ growth mechanism in O radical atmosphere, under the assumption that the O radicals are diminished exponentially in the  $GeO_2$  film [3]. However, questions still remained on bulk properties of thin  $GeO_2$  film grown at low temperature despite of its importance. In this study, bulk properties of  $GeO_2$  film grown by radical oxidation are investigated in terms of the chemical shift between  $Ge^{0+}$  and  $Ge^{4+}$  in thin  $GeO_2$  region, and the effects of additional annealing on Ge chemical shifts are discussed.

**[Experimental]** The HF-last Ge(100) is oxidized with O radicals which is filtered with quartz orifice and generated by microwave O<sub>2</sub> plasma at 350 °C. The GeO<sub>2</sub> thickness and Ge 3*d* chemical shift are determined by x-ray photoemission spectroscopy. Diluted H<sub>2</sub>O (5%) solution was used to measure the etching rate of GeO<sub>2</sub> film. In order to investigate the effect of additional annealing on radical oxidized GeO<sub>2</sub> film, the GeO<sub>2</sub>/Ge samples were annealed at low temperature (350 °C) for 30 s in vacuum (~2×10<sup>-3</sup>Pa).

**[Results and Discussion] Fig. 1** shows the measured Ge 3*d* chemical shifts as a function of GeO<sub>2</sub> film thickness. The peak shifts of GeO<sub>2</sub> grown by radical oxidation indicate that the concentration of suboxide (GeO<sub>x</sub>) becomes higher as GeO<sub>2</sub> thickness decreases (thinner than 3 nm). It is interesting to see that chemical shift of GeO<sub>2</sub> has changed to Ge<sup>4+</sup> by additional annealing. It suggests that internal structure of Ge-O bonding is varied by additional annealing. As shown in **Fig. 2**, the etching rate of annealed GeO<sub>2</sub> film becomes faster compared to as-oxidized one. Since there is no significant change in the thickness of GeO<sub>2</sub> film, the enhanced etching rate of annealed GeO<sub>2</sub> film is possibly due to the dominant Ge<sup>4+</sup> states, which is more soluble in water than Ge<sup>2+</sup> or Ge<sup>3+</sup>. Two results are quite consistent with each other. The gradual peak shifts in thinner region ( $t_{ox}$ <1 nm) in **Fig. 1** suggest the existence of the transition layer on Ge. As reported by Zhang *et al.*[4], it suggests that the GeO<sub>x</sub> is dominant in this thickness region. In  $t_{ox}$ >1.5nm region, however, the peak shifts becomes closer to Ge<sup>4+</sup> state by annealing. Since it is clear that the radicals are diminished during oxidation, oxygen molecules may be created from recombination of O radicals inside the film. It is thought that these residual oxygen molecules may react with suboxide during annealing even in vacuum.

[**References**] [1] M. Kobayashi *et al.*, J. Appl. Phys. 106 (2009) 104117; [2] A. Wada *et al.*, Jap. J. Appl. Phys. 51 (2012) 125603; [3] W. Song *et al.*, SSDM 2012, pp. 745; [4] R. Zhang *et al.*, IEDM 2012, pp. 371.



**Fig. 1**: Ge 3*d* chemical peak shift as a function of oxide thickness for thin region (annealed in vacuum).



**Fig. 2**: Etching rate of  $GeO_2/Ge$ . In vacuum annealing, the etching rate becomes faster.