29a-A2-12

定量化赤外フーリエ分光断層イメージング装置の構築

Apparatus Configuration of Quantitative Fourier-Spectroscopic Tomography

with Infrared Radiation

香川大学工学部,⁰石田 茜,佐藤 駿,鈴木 陽,鈴木 聡,石丸 伊知郎

Faculty of Engineering Kagawa University,

[°]Akane ISHIDA, Shun SATO, Yo SUZUKI, Satoru SUZUKI, Ichiro ISHIMARU

E-mail: ishimaru@eng.kagawa-u.ac.jp

1.はじめに

我々は、近赤外光を用いた無侵襲血糖値センサ ーの実現を目指し、分光特性の相対強度変化 0.01[%]を精度目標とした.結像型2次元フーリエ 分光法¹⁾の、インターフェログラムにおける縦軸 と横軸ごとの計測精度劣化要因について解析した. 2.相対強度計測精度向上のための誤差要因解析

2.1 光軸ずれによる干渉強度鮮明度劣化

結像型2次元フーリエ分光法は, 准共通光路型 波面分割物体光間位相シフト干渉法である(図1). フーリエ変換面上の光軸のずれは, 位相シフター のミラー部の光量比変化となり, 干渉鮮明度劣化 要因となる. 精度目標 0.01%を満たす光軸のずれ 許容値を幾何的に算出すると1.15[µm]であった.

Fig.1 Visibility Degradation by Optical Axis Error 2.2 位相ゆらぎによる相対強度劣化

目標精度 0.01[%]を達成する位相揺らぎ誤差は, 統計解析により位相シフターの移動精度 10[nm] 以下でならなくてはならない²⁾.これは,時間的 なフレームレートの安定性に換算すると 0.4[ms] であった.高時間分解能計測であるワンショット フーリエ分光法³⁾の場合,移動精度を空間的に画 素ピッチに換算すると 1.3[µm]であった(図 2).

3. 定量化赤外フーリエ分光断層イメージング

図3に示すように,前記の指標を加味した定量 化赤外フーリエ分光断層イメージング装置を構築 した.本装置は,ワンショットフーリエ分光法に より高時間分解能計測が可能となる.また,液体 セルの冶具に基準面を2箇所設置し,キー溝によ り光軸を統一することで再現性を保証した.

4.おわりに

今後,定量化赤外フーリエ分光断層イメージン グ装置によりグルコース濃度の計測精度評価を行 い,数値的な位相補償などの検討を行う.

Fig.2 Temporal and Spatial Phase Shift Method

Fig.3 Apparatus Configuration of Quantitative Fourier Spectroscopic Tomography with Infrared Radiation

5. 参考文献

- Y.Inoue *et al.*, "Variable phase-contrast fluorescence spectrometry for fluorescently stained cells", APL 89,121103(2006)
- 2) 詫間崇史他,"生体組織分光断層像からの成 分定量化アルゴリズム(第一報)",日本光学会 年次学術講演会 2011 講演予稿集,29aD9
- 3) 佐藤駿他,"カード型相対傾斜位相シフター による親指サイズのワンショット分光断層イ メージングユニット",日本光学会年次学術講 演会 2012 講演予稿集,24aA7