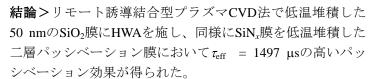
低温堆積 SiN_x/SiO₂二層膜による 結晶シリコン表面パッシベーション

Surface Passivation of Crystalline Silicon

Using Low-Temperature-Deposited SiN_x/SiO_2 Double-Layer 広大院先端研 °小柳 俊貴,林 将平,水野 翼,池田 弥央,花房 宏明,東 清一郎 Graduate School of Advanced Sciences of Matter, Hiroshima University


°S. Koyanagi, S. Hayashi, T. Mizuno, M. Ikeda, H. Hanafusa, and S. Higashi E-mail: semicon@hiroshima-u.ac.jp

序>結晶シリコンの表面パッシベーション膜として熱酸化法により SiO_2 膜を形成した上に SiN_x 膜を堆積した二層構造の膜を用いることにより、高いパッシベーション効果が報告されている[1]。しかし、熱酸化法は 1000 °C 程度の高温を要するため低温で高品質 SiO_2 膜を形成する技術が求められる。これまでにプラズマ化学気相堆積(CVD)法により低温堆積した Si 基板上の SiO_2 膜へ高圧水蒸気熱処理 (HWA)を施すことによって、 SiO_2/Si 界面欠陥が低減され、少数キャリアライフタイム(τ_{eff})が向上することが報告されている[2]。本研究では、リモート誘導結合型プラズマ CVD 法で低温堆積した SiN_x/SiO_2 二層膜及び HWA により、高品質パッシベーション膜の形成を試みた。

実験>厚さ 525 μ m n 型 CZ Si(100)ウェハ(比抵抗 1-50 Ω cm)の両面に 1000 °C でドライ熱酸化膜を 50 nm 形成後、表面のドライ熱酸化膜を緩衝フッ酸により除去した。基板表面にリモート誘導結合型プラズマ CVD 法により基板温度 200 °C において $t=10\sim100$ nm の SiO₂ 膜を堆積後、SiN_x 膜を 250 °C で 70 nm 堆積した。この時、SiN_x 膜堆積前または後に 260 °C、1 MPa の条件下で HWA を 6 h 施した。形成した膜における $\tau_{\rm eff}$ は、擬定常状態光電導法(QSSPC)により測定した。

結果および考察>両面熱酸化後 τ_{eff} は900 μ sであったが、基板表面のみ除去した後に異なる膜厚のSiO₂ 膜を堆積した試料における τ_{eff} はFig.1に示すように< 25 μ sと低い値を示した。このSiO₂膜上にSiN_x膜を

堆積することで $\tau_{eff}=467\sim1188~\mu s$ と大幅な向上が認められた。更に二層膜堆積後HWAを行ったところ、それぞれの試料における τ_{eff} の顕著な向上は見られなかった。 $SiO_2(50~nm)$ 及び SiN_x の単膜ではそれぞれ $\tau_{eff}=25$ 、 $463~\mu s$ であり、これらにHWAを行っても $\tau_{eff}=619$ 、 $606~\mu s$ (Fig. 2)程度であったことから、 SiN_x / SiO_2 の積層構造が表面パッシベーションに有効であることが明らかになった。 SiN_x 膜下層に SiO_2 膜を導入することでウェハ表面の界面準位密度が低減し τ_{eff} が向上したと考えられる。そこで、HWAをより効果的に行うため、 SiO_2 膜堆積後先にHWAを施し、その後 SiN_x 膜の堆積を行った。その結果、 $\tau_{eff}=1497~\mu s$ の最高値が得られ、 SiN_x / SiO_2 積層構造形成後にHWAを行うよりも効果的であることが分かった。

謝辞>本研究の一部は、広島大学ナノデバイス・バイオ融合 科学研究所の施設を用い、最先端・次世代研究開発支援プロ グラム(NEXT プログラム)の支援の下に行われた。

- [1] H. Nagayoshi, et. al., Jpn. J. Appl. Phys. 36 (1997)
- [2] T. Sameshima, et. al., Jpn. J. Appl. Phys. 37 (1998)

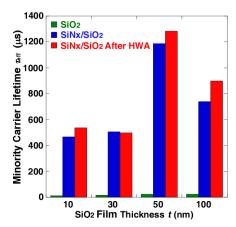


Fig.1. τ_{eff} of passivation films with different SiO₂ thickness.

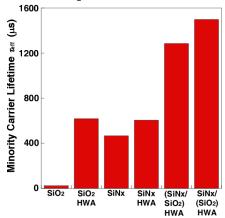


Fig. 2. $\tau_{\rm eff}$ of each passivation films.