29a-G4-6

X 電子伝導を用いた AlGaInSb 混晶太陽電池 AlGaInSb solar-cell with X electron conduction 早大高等研¹, 早大理工², 早大材研³, JST-CREST⁴ ^の河原塚 篤^{1,2,3,4}, 堀越 佳治^{2,3,4} Waseda Univ. WIAS¹, Waseda Univ.², ZAIKEN³, JST-CREST⁴, [°]A. Kawaharazuka^{1,2,3,4}, Y. Horikoshi^{2,3,4}

E-mail: kawaha@waseda.jp

はじめに:近年、再生可能なエネルギー源として、太陽電池の重要性が増々高まっている。薄膜太陽 電池の効率向上には、光吸収効率の向上、開放電圧の上昇、および短絡電流の増加が必要である。 我々は、AlAs/GaAs 超格子および Al_{0.52}In_{0.48}P/Ga_{0.51}In_{0.49}P 超格子における X 電子伝導を利用し、再結 合による電流低下を抑制可能な、新たな太陽電池構造を提案した。しかしながら、実効的なバンドギャッ プはそれぞれ 1.79 eV、2.14 eV とショックレー・クワイサー極限の最適値 1.4 eV 比べて広い。この問題を 解決するため、V 族元素として Sb に着目し AlGaInSb 擬三元混晶を用いたバンドギャップの最適化の検 討を行った。

計算・結果: AlSb、GaSb、InSb のΓ点、X 点でのバンドギャップ {E_g^Γ, E_g^X}はそれぞれ {2.30, 1.62}、 {0.73, 1.03}、{0.17, 0.57} eV であり、AlSb は間接遷移型、GaSb、InSb は直接遷移型のバンド構造を持 つ。したがって Al_xGa_zIn_ySb は組成比の制御により、1.4 eV 付近で直接遷移から間接遷移へ移行する混

晶の成長が可能であると考えられる。計算では、擬二元混晶パラ メーターの内挿にボウイングを取り入れ、これを用いて擬三元系 のバンドギャップを求めた。図1に示すように Al_xGa_zIn_ySb 混晶は Al_{0.43}Ga_{0.57}SbとAl_{0.47}In_{0.53}Sbを結ぶ線を境に直接遷移から間接 遷移に移行する。一方光吸収端を決めるΓギャップは図2の様に 求まる。30%以上の理論効率を示すバンドギャップ 1.0 eV から 1.6 eV の範囲を赤で示した。図1と図2の重なり部分を基に、変 換効率が十分高い範囲でΓ点がX点より50meV (> 26meV: 室 温)高い組成を求めると、Al0.50Ga0.50Sb ({1.37, 1.32} eV)と Al0.51In0.49Sb ({1.15, 1.10} eV)を結ぶ線となる。AlSbとGaSb はほ ぼ格子整合し、GaSbまたはInAs 基板へのエピタキシャル成長が 容易であること、出力電圧を高く取れることから、今回検討を行っ た Sb 系材料では Al_{0.50}Ga_{0.50}Sb が最適であると考えられる。多接 合型への拡張を含め、バンドギャップを更に広げるには V 族に AsSb を導入し、Al_xGa_{1-x}As_vSb_{1-v}四元混晶とすることが有効であ ると考えられる。

