X電子伝導を用いた AlGaInSb 混晶太陽電池

AlGaInSb solar-cell with X electron conduction 早大高等研¹,早大理工²,早大材研³,JST-CREST⁴ ○河原塚 篤 ^{1,2,3,4},堀越 佳治 ^{2,3,4}

Waseda Univ. WIAS¹, Waseda Univ.², ZAIKEN³, JST-CREST⁴,

[°]A. Kawaharazuka^{1,2,3,4}, Y. Horikoshi^{2,3,4}

E-mail: kawaha@waseda.jp

はじめに: 近年、再生可能なエネルギー源として、太陽電池の重要性が増々高まっている。薄膜太陽電池の効率向上には、光吸収効率の向上、開放電圧の上昇、および短絡電流の増加が必要である。 我々は、AlAs/GaAs 超格子および $Al_{0.52}In_{0.48}P/Ga_{0.51}In_{0.49}P$ 超格子における X 電子伝導を利用し、再結合による電流低下を抑制可能な、新たな太陽電池構造を提案した。しかしながら、実効的なバンドギャップはそれぞれ $1.79~{\rm eV}$ 、 $2.14~{\rm eV}$ とショックレー・クワイサー極限の最適値 $1.4~{\rm eV}$ 比べて広い。この問題を解決するため、V 族元素として Sb に着目し AlGaInSb 擬三元混晶を用いたバンドギャップの最適化の検討を行った。

計算・結果: AlSb、GaSb、InSb の Γ 点、X 点でのバンドギャップ $\{E_g^{\ \Gamma}, E_g^{\ X}\}$ はそれぞれ $\{2.30, 1.62\}$ 、 $\{0.73, 1.03\}$ 、 $\{0.17, 0.57\}$ eV であり、AlSb は間接遷移型、GaSb、InSb は直接遷移型のバンド構造を持つ。したがって $Al_xGa_zIn_ySb$ は組成比の制御により、1.4 eV 付近で直接遷移から間接遷移へ移行する混

晶の成長が可能であると考えられる。計算では、擬二元混晶パラ メーターの内挿にボウイングを取り入れ、これを用いて擬三元系 のバンドギャップを求めた。図1に示すように Al_xGa_zIn_vSb 混晶は Al_{0.43}Ga_{0.57}SbとAl_{0.47}In_{0.53}Sbを結ぶ線を境に直接遷移から間接 遷移に移行する。一方光吸収端を決めるΓギャップは図2の様に 求まる。30%以上の理論効率を示すバンドギャップ 1.0 eV から 1.6 eV の範囲を赤で示した。図1と図2の重なり部分を基に、変 換効率が十分高い範囲でΓ点が X 点より 50 meV (> 26 meV: 室 温)高い組成を求めると、Al_{0.50}Ga_{0.50}Sb ({1.37, 1.32} eV)と Al_{0.51}In_{0.49}Sb ({1.15, 1.10} eV)を結ぶ線となる。AlSbとGaSbはほ ぼ格子整合し、GaSbまたはInAs 基板へのエピタキシャル成長が 容易であること、出力電圧を高く取れることから、今回検討を行っ た Sb 系材料では $Al_{0.50}Ga_{0.50}Sb$ が最適であると考えられる。 多接 合型への拡張を含め、バンドギャップを更に広げるには V 族に AsSb を導入し、Al_xGa_{1-x}As_vSb_{1-v} 四元混晶とすることが有効であ ると考えられる。

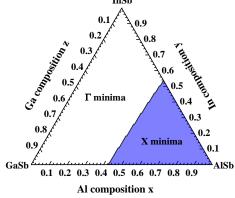


図1 Al_xGa_zIn_vSb 伝導帯の底

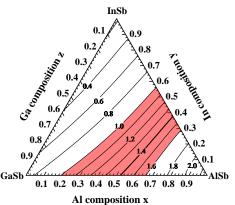


図2 Al_xGa_zIn_vSb のΓギャップ(eV)