Effect of Drain Voltage Dependent Subthreshold Voltage Reduction on Energy Efficiency in Steep Subthreshold Slope Transistors
Seung-Min Jung, Takuya Saraya and Toshiro Hiramoto
Institute of Industrial Science, University of Tokyo
E-mail: smjung@nano.iis.u-tokyo.ac.jp

[Introduction] As the integration level of CMOS technology increases, not only high performance but also energy-efficient circuits are highly required. Steep subthreshold slope (S) transistors, such as I-MOS [1] and tunnel FET (TFET) [2], are promising for energy efficient VLSIs. It has been shown that the energy consumption (power-delay product) strongly depends on S and extremely low energy circuit operations can be achieved by steep S transistors [3]. However, some of TFETs show drain voltage dependent \(V_{th} \) reduction (so called DIBL), and the measured value of \(\eta = \frac{\Delta V_{th}}{\Delta V_{dd}} \) is as large as 0.74 below \(V_{dd} = 0.3V \) [4]. In this work, the dependences of energy consumption on S as well as \(\eta \) are investigated in subthreshold region below supply voltage \((V_{dd}) \) of 0.3V. It is shown that \(\eta \) should be suppressed to achieve extremely low energy circuit operations using steep S transistors.

[Results and Discussion] When \(\eta \) is large (i.e. DIBL is worse), drain current never reaches on-current (\(I_{on} \)) at \(V_{dd} = V_{dd} \) in actual circuit operations. To consider the effect of \(\eta \), effective drain current (\(I_{eff} \)) is introduced [5]. \(I_{eff} \) is getting lower with larger \(\eta \) (worse DIBL) even at constant \(I_{on} \). Fig. 1 shows the calculated \(V_{dd} \) dependence of energy consumption at various S when \(\eta = 0 \) (no DIBL). \(I_{eff} \) is fixed to \(1 \times 10^{12} \) A/\(\mu m \) at \(V_{dd} = V_{dd} \). Assuming logic circuits, the active time ratio (\(\xi \)) is set to be 0.001 [4]. Extremely low energy is also achieved in smaller S because steeper S shows higher \(I_{eff}/I_{on} \) ratio. The minimum energy is obtained around \(V_{dd} = 0.1V \) when S=30mV/dec. However, the energy consumption severely increases and the minimum energy also increases as shown in Fig. 2, where the \(\eta \) dependence of the energy consumption is shown at S=30mV/dec. This is because \(I_{eff} \) is degraded by the effect of \(\eta \) and the \(I_{eff}/I_{on} \) ratio decreases.

[Conclusion] Energy-efficient circuit cannot be realized in steep S transistors if \(\eta \) is large (DIBL is large). \(\eta \) should be suppressed to take advantage of steep S characteristics in steep S transistors.

Fig. 1 Calculated \(V_{dd} \) dependence of energy at various S when \(\eta = 0 \). \(I_{eff} \) is fixed to \(1 \times 10^{12} \) A/\(\mu m \) at \(V_{dd} = V_{dd} \).

Fig. 2 Calculated \(V_{dd} \) dependence of energy at S=30mV/dec at various \(\eta \). \(I_{eff} \) is fixed to \(1 \times 10^{12} \) A/\(\mu m \) at \(V_{dd} = V_{dd} \).