Ce:LiCaAlF₆ シンチレータにおける中性子/ガンマ線波形弁別 Neuron/gamma discrimination for Ce:LiCaAlF₆ scintillators using pulse shape discrimination method

名大¹,トクヤマ²,九工大³,東北大⁴ ○渡辺賢一¹,近藤良行¹,高橋嘉彦¹,山﨑淳¹,瓜谷章¹, 井口哲夫¹,河口範明²,福田健太郎²,石津澄人²,柳田健之³,藤本裕⁴,吉川彰⁴ Nagoya Univ.¹, Tokuyama Corp.², Kyushu Inst. Tech.³, Tohoku Univ.⁴

○Kenichi Watanabe¹, Yoshiyuki Kondo¹, Yoshihiko Takahashi¹, Atsushi Yamazaki¹, Akira Uritani¹,
Tetsuo Iguchi¹, Noriaki Kawaguchi², Kentaro Fukuda², Sumito Ishidu², Takayuki Yanagida³,
Yutaka Fujimoto⁴, Akira Yoshikawa⁴

1.緒言 新しい中性子検出器として中性子吸収断面積の大きい 6 Li を含む LiCaAlF₆(Ce:LiCAF)シンチレータの開発が進められている。Ce:LiCAF シンチレータではガンマ線誘起の波形にのみ高速発光成分が存在しており、本研究ではこの高速発光成分の有無を利用することで中性子/ガンマ線事象を弁別することを試みた。さらにCe 添加濃度を 2.4%と変化させて中性子/ガンマ線弁別性能の比較を行った。

2.実験 シンチレータとして Ce を添加した $LiCaAIF_6$ を用い、光電子増倍管からの出力波形を取得した。中性子線源としてポリエチレン減速材で周囲を覆った 252 Cf 線源を使用し、取得した各波形について全発光量、高速成分発光量を計算した。 Fig. 1 は Ce2% 添加 LiCAF シンチレータについて、横軸に全発光量、縦軸に高速成分発光量をとった二次元ヒストグラムを示している。 Fig. 1 を見ると、図中に示す破線によって中性子/ガンマ線事象がはっきりと弁別できていることがわかる。図中に示す破線と平行な方向に対して事象数を積算し、作成したスペクトルを Fig. 2 に示す。ここで Fig. 2 の横軸は破線からの距離を示している。中性子/ガンマ線弁別性能を評価するために、Figure of $Merit: FoM = \Delta S/(FWHM_n + FWHM_p)$ を計算した。ここで ΔS はピーク間距離、 ΔS Fig. 2 を基に ΔS ΔS を基に ΔS ΔS に ΔS ΔS

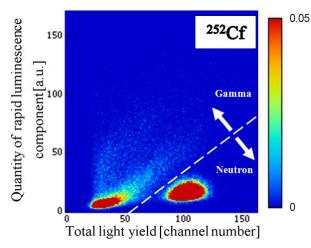


Fig. 1 横軸に全発光量、縦軸に高速成分発 光量をとった二次元ヒストグラム

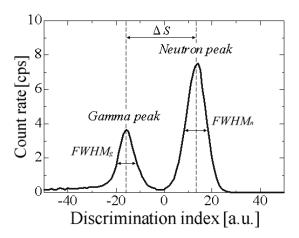


Fig. 2 中性子/ガンマ線弁別スペクトル