位置有感型比例計数箱 PS-TEPC ver. 2 の開発状況(IV)

Current Status of Development of PS-TEPC ver.2 (IV)

高エネルギー加速器研究機構(KEK)¹, 慶応義塾大学², 宇宙航空研究開発機構(JAXA)³, 神戸大学⁴, 京都大学⁵, 放射線医学総合研究所⁶, 早稲田大学⁷

〇岸本 祐二¹, 佐々木 慎一¹, 高橋 一智¹, 齋藤 究¹, 俵 裕子¹, 寺沢 和洋², 布施 哲人³, 永松 愛子³, 伊藤 裕一³, 松本 晴久³, 森 國城³, 身内 賢太朗⁴, 谷森 達⁵, 窪 秀利⁵, 内堀 幸夫⁶, 北村 尚⁶, 道家 忠義⁷

High Energy Accelerator Research Organization(KEK)¹, Keio Univ.², Japan Aerospace Exploration Agency(JAXA)³, Kobe Univ.⁴, Kyoto Univ.⁵, National Institute of Radiological Sciences⁶, Waseda Univ.⁻, ∘ Yuji Kishimoto¹, Shin-ichi Sasaki¹, Kazutoshi Takahashi¹, Kiwamu Saito¹, Hiroko Tawara¹, Kazuhiro Terasawa², Tetsuhito Fuse³, Nagamatsu Aiko³, Yuichi Ito³, Haruhisa Matsumoto³, Kunishiro Mori³, Kentaro Miuchi⁴, Toru Tanimori⁵, Hidetoshi Kubo⁵, Yukio Uchihori⁶, Takashi Kitamura⁶, Tadayoshi Doke⁻

E-mail: yuji.kishimoto@kek.jp

我々は宇宙機船内における空間線量計としての利用を考えた位置有感型比例計数箱 (PS-TEPC) の開発を行っている。宇宙滞在によって受ける放射線被ばくは地表より2オーダーも高く、宇宙飛行士の滞在期間は生涯滞在被ばく線量によって制限されている。そのため、線量計測器の測定精度が低い場合には宇宙飛行士の滞在期間に必要以上の制限を与えることになる。宇宙放射線による被ばく線量は通常、LET (Linear Energy Transfer) の関数として与えられる線質係数と吸収線量との積で表される線量当量により評価される。国際宇宙探査協働グループ (ISECG) によって長期ビジョンとして打ち出されている月面や小惑星への有人探査を考えると、これらのパラメーターを高い精度でモニターする線量計が必要となることは想像に難くない。また、前述の精度要求に加えて、宇宙機器へのリソース要求(電力、重量、スペース)と宇宙環境を考慮した応答要求(複数の線質に対する感度、広いLET レンジ)等の搭載性能が要求される。

PS-TEPC は μ -PIC と呼ばれるピクセル型電荷読み出しデバイスを用いた有感体積 $26\times26\times50$ mm³のTime Projection Chamber であり、入射放射線のガスに対するエネルギーデポジットだけでなく3次元飛跡を取得することが可能である。3次元飛跡からは1イベント毎の飛跡長を見積もることができるため、 LET を精度良く求めることができるのが最大の特徴である。

PS-TEPC は既に国際宇宙ステーション日本モジュール「きぼう」船内実験室第二期利用後半期間科学分野候補として採択されている。機上への搭載は2014年が予定されており、搭載後は動作実証試験を行うことを計画している。現在はフライトモデルの設計を進めると共に、機上での使用を想定し、生体組織等価ガス(TE ガス)を使用した試験を進めている。2012年11月にはHIMACにて、メタンベースTE ガスを使用した場合のFe (500MeV/n)と C (400MeV/n) に対する応答を調べた。この結果も踏まえ、本講演ではPS-TEPCの開発状況について述べる。