29p-A9-2

YAIO₃の点欠陥(Ⅳ)~光照射による顕在化と消滅~

Point Defects in YAIO₃ (IV) - Their Manifestation and Disappearance by Photon Irradiation-

早大先進理工 🔍 (学部 4 年) 井上貴博,森本貴明,山坂大樹,堀井陽介,大木義路

Waseda Univ. , ^OT. Inoue, T. Morimoto, D. Yamasaka, Y. Horii, Y. Ohki

E-mail: t.kiwoku@fuji.waseda.jp

はじめに半導体ゲート絶縁膜に点欠陥や不純物があると、 禁制帯内に局在準位が生じ、絶縁性が低下する懸念がある。 そこで、光照射による吸収帯出現と消滅から YAIO₃の局在 準位を調べた。

実験 YAIO₃ 単結晶に Xe₂エキシマランプ(7.21 eV)を 3 時間 照射した前後の吸収スペクトルを Fig.1 の挿入図に、その 差スペクトルと上記紫外光照射後に引き続いて可視白色光 を 49 時間照射したときの同じく差スペクトルを Fig.1 に示 す。7.21 eV 光により 2.9, 3.5, 4.8, 5.6 eV 付近の吸収が増加 し、可視白色光により消滅する。2.9 と 3.5 eV の吸収は、 正孔を捕獲した Y³⁺空孔あるいは Al³⁺空孔に⁽¹⁾、5.6 eV の吸 収は、1 つまたは 2 つの電子を捕獲した 1 価または中性の 酸素空孔(F⁺または F center)に起因する⁽²⁾⁽³⁾。

7.21 eV 光を 3 時間照射後 1.5-6.0 eV の単色光を照射した が、照射光が 1.5 eV と 2.5 eV の場合について、各吸収帯強 度の光子数依存性を、7.21eV 光照射直後のピーク強度で規 格化し、Fig.2 に示す。光子エネルギー2.5 eV では 1×10¹⁶ cm⁻² の照射により、各吸収帯は 20%以下に減衰するが、1.5 eV では照射前の 70%以上の強度を保っている。また、7.21 eV 光照射後に単色光を 1.0×10¹⁶ cm⁻² 照射した後の各吸収帯 強度の光子エネルギー依存性を Fig.3 に示す。各吸収帯で 減衰挙動は異なるが、光子エネルギー2.5 eV と 3.0 eV で大 きく減衰が起こり、特に 2.5 eV で減衰速度が最大となる。

YAIO₃では、Hg ランプ(4.96 eV)照射で吸収が増加し、 2.7 eV 光照射で減衰する⁽⁴⁾ことが報告されているが、本研 究から各吸収帯の減衰挙動は異なるものの最大減衰は 2.5 eV で生じることが分かった。今後、欠陥準位のエネ

文 献

(5) B. K. Sevast' yanov: Crystallography Reports, 48, 989-1011 (2003). (6) V. S. Kortov et al.: Phys. Solid. State, 45, 1260-1266 (2003).

Fig.1 Absorption spectra (inset) and their difference induced by 7.21 eV irradiation (-) and its decay induced by visible photon irradiation for 49 hour (-). Broken lines show Gaussian-fitted components.

Fig.2 Intensity decays of absorption bands at 2.9 (•), 3.5 (Δ), 4.5 (•) and 5.6 eV (\Box) by 1.5 eV (a) and 2.5 eV (b) monochromatic light irradiation.

Fig.3 Intensity decays of absorption bands at 2.9 (•), 3.5 (Δ), 4.5 (•) and 5.6 eV (\Box) by monochromatic light irradiation in a range of 1.5 to 6.0 eV with densities of 1.0×10^{16} cm⁻². WL stands for white light.

ルギー⁽⁵⁾⁽⁶⁾を考慮し、反応メカニズムを調べる。

⁽¹⁾ J. Chen et al.: Current Applied Physics, 10, 468 - 470 (2010).

⁽²⁾ Y. V. Zorenko *et al*.: Optic. Spectros., **96**, 591 - 596 (2004).

⁽³⁾ D. Yamasaka *et al.*: J. Appl. Phys., **110**, 1-6 (2011). (4) H. J. Bernhardt: Phys. Stat. Sol., **21**, 95-98 (1974).