29p-B4-5

GalnAsP/InP 半導体薄膜レーザの室温連続動作

Room-temperature CW Operation of GaInAsP/InP Semiconductor Membrane Laser

東京工業大学 電気電子工学専攻¹, 量子ナノエレクトロニクス研究センター²

[○]土居恭平1,進藤 隆彦2,二見 充輝1,李 智恩1,山原 佳晃1,平谷 拓生1,井上 大輔1,楊 書1 雨宮 智宏2,西山 伸彦1,荒井 滋久1.2

¹ Dept. of Electrical and Electronic Engineering, ² Quantum Nanoelectronics Research Center, Tokyo Institute of Technology

^OKyohei Doi¹, Takahiko Shindo¹, Mitsuaki Futami¹, Jieun Lee¹, Yoshiaki Yamahara¹,

Takuo Hiratani¹, Daisuke Inoue¹, Shu Yang¹,

Tomohiro Amemiya², Nobuhiko Nishiyama¹, and Shigehisa Arai^{1.2} E-mail: doi.k.ac@m.titech.ac.jp, arai@pe.titech.ac.jp, http://www.pe.titech.ac.jp/AraiLab/

<u>はじめに</u>オンチップ光配線の実現に必要不可 欠となる極低消費電力動作可能な光源として、 我々は強光閉じ込め構造を用いた半導体薄膜 DFB レーザを提案してきた[1]。これまでに、厚 さ 450 nm のコア層(光閉じ込め係数 ξ = 2.1%/well)を有する薄膜レーザの電流注入動作 を実現している[2,3]。今回は 220 nm 厚のコア層 (ξ = 3.2%/well)を有する半導体薄膜レーザを作 製し、電流注入動作において初めての室温連続発 振を実現したのでご報告する。

結果 Fig. 1 に今回作製したコア厚220 nmのBe ドープコンタクト層を有する半導体薄膜FP レー ザの構造図を示す。n-InP 基板上に5 層の GalnAsP 歪補償量子井戸、上下のi-GalnAsP 光 閉じ込め層、および50 nmのi-InP 表面保護層か らなる220 nmのコア層を有した分子ビーム成長 法による初期成長基板を用いて、ドライエッチン グおよび有機金属気相成長法により横方向電流 注入構造を形成した。続いて、BCB を介したホ スト基板への貼り付けと InP 基板側の薄膜化処 理を施した後、コンタクト層の除去および電極 Ti/Au の蒸着を行った。

Fig. 2 に示すように、ストライプ幅 $W_s = 1 \mu m$ 、 共振器長 $L = 700 \mu m$ の素子において薄膜レーザ としては初の室温連続動作が得られ、しきい値電 流 h = 3.5 mA(しきい値電流密度 $J_m = 500$ A/cm²)、片端面からの外部微分量子効率 $\eta_a =$ 11.4%/facet が得られた。これは、貼り付けに用 いた BCB の厚さを従来の 6 μm から 2 μm 程度ま で薄膜化したことにより、熱抵抗が大幅に低減さ れたためと考えられる。Fig. 3 に示すように、こ の素子のしきい値電流は理論値に近く、今後はス トライプ上部の i-InP 表面保護層への表面回折格 子形成を行った短共振器 DFB レーザを作製し、 極低しきい値電流動作化を目指す。

<u>謝辞</u>本研究は JSPS 科研費(#24246061, #22360138, #21226010, #23760305, #10J08973)、総務省 SCOPE および総合科学学術会議により制度設計された JSPS-FIRST プログラムの援助により行われた。

<u>参考文献</u>

[1] S. Sakamoto, et al., IEEE J. Sel. Top. Quantum

Fig. 1 Schematic structure of the membrane laser with Be doped contact layer.

Fig. 2 Light output and V-/characteristics.

Fig. 3 Calculated threshold current as a function of cavity length.

Electron., vol. 13, no. 5, pp. 1135-1141, Sep. 2007.

- [2] T. Shindo et al., Opto-Electron. and Commun. Conf. (OECC2011), 6D3-7, July 2011.
- [3] M. Futami et al., Proc. Int. Conf. Indium Phosphide and Related Materials (IPRM2012), Th-2C, Aug. 2012.