Photovoltaic properties of carbon p-i-n solar cell by microwave surface wave plasma CVD

マイクロ波表面波プラズマ CVD によるカーボン p-i-n 太陽電池の光起電力特性

M. Umeno, Dilip. C. Ghimire, Sudip Adhikari, H. Uchida, K. Wakita
Department of Electronics and Information Engineering, Chubu University, Kasugai, Aichi, Japan

* E-Mail: umeno@isc.chubu.ac.jp

We report the photovoltaic and optical, electrical and structural properties of p-i-n solar cell developed by microwave wave surface wave plasma chemical vapor deposition (CVD). Carbon thin films were synthesized by microwave (MW) surface wave plasma (SWP) CVD on quartz, silicon and copper substrates. The detail of MW SWP CVD and substrate cleaning process is described elsewhere [2]. Argon, acetylene, triethyl boron and phosphine were used as a carrier, source and dopant gases.

For deposition, CVD chamber was evacuated to a base pressure at approximately 5×10^{-4} Pa using a turbo pumps. The launched microwave power was typically 1100 W and a constant gas composition pressure is maintained at 40 Pa during film preparation. High resolution transmission electron microscope (HR-TEM), Raman spectroscopy, Halls effect measurements and solar simulator were employed. Fig.1. shows photovoltaic device performances of p-i-n heterojunction carbon film and n-Si substrate. The preliminary photovoltaic results of the cell reveals a short-circuit current density of 33.18 mA/cm2, open-circuit voltage of 0.39 V, $FF=0.243$ and photoelectrical conversion efficiency of 3.24%, a reproducible result. The spectral photo response characteristic of the device configuration was explained in terms of transmission/absorption characteristics of the two individual carbon layers. The detailed results and discussions will be presented during the conference.

References: