29p-G13-12

(チオフェン/フェニレン)コオリゴマーへの pn ドーピング効果

Effects of pn doping in Thiophene/Phenylene Co-oligomers

産総研電子光技術¹、産総研ナノデバイス²、山大院理工³、産総研ナノシステム⁴、京工繊大院工芸⁵ 〇佐々木史雄¹、川口喜三¹、望月博孝¹、原市聡¹、石塚知明²、大塚照久²、富江敏尚²、渡辺秀治³、 下位幸弘⁴、山雄健史⁵、堀田收⁵

ESPRIT AIST¹, ICAN AIST², Yamagata Unv.³, NRI AIST⁴, Kyoto Inst. Technol.⁵

°Fumio Sasaki¹, Yoshizo Kawaguchi¹, Hiroyuki Mochizuki¹, Satoshi Haraichi¹, Tomoaki Ishitsuka²,

Teruhisa Ootsuka², Toshihisa Tomie², Shuji Watanabe³, Yukihiro Shimoi⁴, Takeshi Yamao⁵,

Shu Hotta⁵

E-mail: f-sasaki@aist.go.jp

はじめに:(チオフェン/フェニレン)コオリゴマー(TPCO)結晶は、室温での高い発光効率、トランジスタ動作及び EL 観測など、優れた伝導制御性だけでなく、バルク単結晶や薄膜で高密度光励起下での ASE が観測されており、電流注入型有機半導体レーザーへの展開が期待できる。その際、電流注入特性の向上には TPCO 系有機半導体と電極界面におけるエネルギー準位の接合に関する情報が重要であり、それを得るために TPCO 系有機半導体薄膜の表面電子状態を極端紫外(EUV)光による光電子分光(EUPS)で測定を行い、その結果について以前報告した[1]。特に2次電子スペクトルのLeading Edge から仕事関数を求め、ドーピングによる変化についても報告した。今回は実際の EL デバイスでドーピングによる大幅な特性向上が得られたので、その結果について報告する。

結果と議論:用いた試料は前稿同様、TPCO 系有機半導体の内、p型特性を示す BP1T(2,5-bis(4-biphenylyl)thiophene), と n型特性を示す AC5-CF₃(1,4-bis{5-[4-(trifluoromethyl)phenyl]thiophen-2-yl}benzene)の多結晶薄膜を用いた。これに p型ドーパントとして MoO₃を、n型ドーパントとしては Cs₂CO₃をそれぞれ 2%ずつ BP1T と AC5-CF₃にドーピングした。それらの 2 次電子スペクトルを Fig. 1 に示す。この図から分かるよう、フェルミレベル は BP1T が 4.0eV から 4.3eV へ、AC5-CF₃が 4.8eV から 3.9eV ヘシフトした。いずれもシフトの向きは p型、n型ドーピングとして適切な方向である。次に、この 2%ドーピング膜を用いて実際の EL デバイス作製を行った。EL 素子はドーピングしていない BP1T と AC5-CF₃を 使った ITO/BP1T(200nm)/AC5-CF₃(200nm)/Mg/Ag とドーピング膜を両極前後に使った ITO/P-BP1T(50nm)/BP1T(150nm)/AC5-CF₃(150nm)/n-AC5-CF₃(50nm)/Mg/Ag の 2 種類を作製し、その EL 特性を比較した。Fig. 2 にその I-V 特性を示す。図中赤線がドーピング膜を使った特性で、ノンドープの pn 接合に比べ 20 倍以上の電流値向上が実現できた。 詳細は講演で報告する。[1]佐々木他、第59 回応物関係連合講演会 18a-F7-2

Fig. 1 Secondary emission spectra of EUPS

Fig. 2 I-V curves of two kind of EL devices