IBAD-MgO 基板上に作製した BaHfO₃添加 GdBa₂Cu₃O₂薄膜の磁場中 J_c向上 Improvement of J_c in magnetic fields of

BaHfO₃ doped GdBa₂Cu₃O_y thin films on IBAD-MgO substrates

名大工¹, ISTEC-SRL², JFCC³ [°]樋川 一好¹, 吉田 隆¹, 一野 祐亮¹,

吉積 正晃², 和泉 輝郎², 塩原 融², 加藤 丈晴³ Nagoya Univ.¹, Superconductivity Research Lab.², JFCC³, [°]Kazuyoshi Hikawa¹, Yutaka Yoshida¹, Yusuke Ichino¹, Masateru Yoshizumi², Teruo Izumi², Yuh Shiohara², Takeharu Kato³, E-mail: hikawa-kazuyosi12@ees.nagoya-u.ac.jp

【はじめに】

GdBa₂Cu₃O_v (GdBCO)薄膜は内部に積層欠陥などが 多く存在し、これらがピンニングセンターとして働く ことで磁場中において YBa₂Cu₃O_v (YBCO)より高い J_c を示すことが報告されている^[1]。また、GdBCO薄膜に BaHfO₃ (BHO)を添加した試料において、膜厚に対す る磁場中 Jc の低下が少ないことが報告されており^[2]、 これらの理由から応用に向けて研究が盛んに行われて いる。このように高い Jc が報告されている GdBCO+BHO の特性をさらに向上させることを目的 として、Gd/Ba 置換量、成膜温度、BHO 添加量の最適 化について検討した。本研究では IBAD-MgO 基板上に BHO を導入した GdBCO 薄膜を作製することで、磁場 中超伝導特性の評価及び BHO の微細構造観察を行っ た。

【実験方法】

BHO を導入した GdBCO 薄膜は IBAD-MgO 基板上 に KrFエキシマレーザーを用いたパルスレーザー蒸着 法により、基板温度 780 °C、 酸素分圧 53 Pa、ター ゲット - 基板間距離 60 mm、繰り返し周波数 10 Hz の条件の下で作製した。また、BHO の導入方法は GdBCO 焼結体上に扇状に加工した薄い BHO 焼結体を 乗せて成膜を行う修飾ターゲット法を用いた。本研究 では、扇状の BHO の角度及び乗せる個数を変化させ ることで、BHOの添加量を 0.5 - 3.3 vol.% の間で制御 を行った。膜厚は約210 nm とした。

作製した薄膜は結晶構造をX線回折(XRD)法で、超 伝導特性は直流四端子法を用いて評価を行った。また 薄膜の微細構造観察に透過電子顕微鏡(TEM)を用いた。

【実験結果及び考察】

Fig. 1 に 77 K における B//c 方向に対する J_c の磁場 依存性を示す。挿入図は BHO 添加量に対する T。及び 自己磁場における J_c (J_c^{self}) である。BHO 添加量の増 加とともに T_c は 92.6 から 87.3 K へ、J^{self} は 4.7 から 0.9 MA/cm^2 へと低下する傾向を示した。また J_c の磁 場依存性は、BHO を添加したすべての薄膜において Jc の低下が少ない平坦な部分を確認できる。これは BHO が薄膜中で c 軸相関ピンとして働いているためと 考えられる。また、平坦な部分は BHO の添加量を増 加させるにしたがって広くなり、2.9 vol.% を添加した 薄膜においては 7 T 付近まで広がった。YBCO+ BaSnO₃薄膜ではこの広がりが3T付近までであるこ とから^[3]、本研究の試料は高磁場で高いピンニング力 を有しているために広い平坦領域が得られたと推察さ れる。

Fig. 2 に 1.5 vol.% を導入した薄膜の TEM 観察像を

示す。BHO がナノロッドとして成長していることが確 認され、そのナノロッドは基板から膜表面まで切れず に直線状に成長していた。ナノロッドの半径は約 4.4 nm、数密度は約 9.5×10¹⁰/cm²、間隔は約 32 nm であ る。

以上、各種条件の最適化によって高磁場において高 い Jc が得られた。今後このような特性が出た理由を 不可逆磁場などから考察する。

Fig. 1 Magnetic field dependence of J_c for the BHO - doped - GdBCO thin films. Inset shows BHO content dependence of $T_{\rm c}$ and $J_{\rm c}^{\rm self}$

Fig. 2 Cross-sectional TEM image of the 1.5 vol.% - BHO - doped - GdBCO thin films.

【謝辞】

本研究の一部は、科学研究費補助金(23226014, 19676005)からの助成及び、ISTEC を通じて NEDO か ら委託を受けて実施したものである。

【参考文献】

[1] K. Takahashi, et al.: Supercond. Sci. Technol. vol. 18 1118 (2005)

[2] H. Tobita, et al.: Supercond. Sci. Technol. vol. 25 062002 (2012)

[3] P. Mele, et al.: Supercond. Sci. Technol. vol. 21 125017 (2008)