29p-G3-2

BHO ピンを導入した PLD 法 GdBCO 線材における磁界中の 臨界電流密度特性の改善(2)

Improvement of properties of critical current density in PLD-processed GdBCO coated conductors with BHO pinning centers (2)

九工大¹, フジクラ², ISTEC-SRL^{3 O}木内 勝¹, 永水 隼人¹, 小田部 荘司¹, 松下 照男¹, 飛田 浩史², 吉積 正晃³, 和泉 輝郎³, 塩原 融³

Kyushu Inst. of Tech.¹, Fujikura², ISTEC-SRL³ ^oMasaru Kiuchi¹, Hayato Nagamizu¹, Edmund Soji Otabe¹, Teruo Matsushita¹, Hiroshi Tobita², Masateru Yoshizumi³, Teruo Izumi³, Yuh Shiohara³ E-mail: kiuchi@cse.kyutech.ac.jp

1 目的

REBCO 線材(RE:希土類)は様々な応用機器への利用が 有望視されている。しかしながら実用化に向けては、磁界下 での臨界電流密度 J_cの更なる向上が求められている。 BaHfO₃(BHO)ナノ・ロッドを人工ピンとして導入した GdBCO 線材は77.3 Kにおいて、磁界下で極めて優れた J_c 特性を示 すことが分かっている[1]。これはナノ・ロッドによる高効率のピ ンニングに加えて、ピンの界面による電子散乱によって向上 すると予想される上部臨界磁界 B_{c2}の改善によるものである と考えられる。

本研究では、これら 2 つの寄与を理論的に分離してそれ ぞれの効果を明確にすることで、BHO ナノ・ロッドによる臨界 電流密度特性向上の機構を解明する。

2 実験

今回測定した試料は、ピン無しの試料と、ピン添加量を 2.5 – 5.0 mol% と変化させた BHO ピン入り試料と、添加量を 3.5 – 5.0 mol% と変化させた BZO ピン入り試料の 6 枚の PLD 法 GdBCO 線材である。試料の諸元を Table 1 に示す。 d は超伝導層の厚さであり、臨界温度 T_c は SQUID 磁力計を 用いて測定した。これらの試料に対して、SQUID 磁力計を用 いた直流磁化法により c 軸方向の磁界下での J_c の磁界依存 性を測定した。また、磁化緩和を測定し E-J 特性を評価した。 測定温度は 77.3 K、印加磁界は 0 – 7 T である。さらに、磁 界中冷却過程の磁化曲線から B_{c2} - T 特性を評価した。

Sample	Additon	<i>d</i> [µm]	<i>T</i> _c [K]
Pure	0 mol%	1.1	90.7
BHO2.5	2.5 mol% BHO	1.2	89.6
BHO3.5	3.5 mol% BHO	1.0	90.5
BHO5.0	5.0 mol% BHO	1.0	89.2
BZ03.5	3.5 mol% BZO	1.1	89.2
BZ05.0	5.0 mol% BZO	1.2	89.3

Table 1 Specifications of specimens.

3 結果及び考察

測定した B_{c2} - T 特性から、 T_c の 95% の温度における B_{c2} の上昇率($|dB_{c2}/dT|_{T/T_c=0.95}$)を求めた。Fig. 1 に $|dB_{c2}/dT|_{T/T_c=0.95}$ 対単位 権積あたりのナノ・ロッド表面積 $\pi \hat{N}_p D$ のグラフを示す。ここで、 \hat{N}_p 、D はそれぞれ単位面積 でのピンの数密度とピンの直径である。ナノ・ロッドの表面積 が増加するほど B_{c2} 特性が向上していることが確認できる。ま た、BHO ピンは BZO ピンに比べて同一表面積での B_{c2} 特性 が高く、BHO ピンによる電子散乱の高さがうかがえる。 Fig. 2 に BH03.5 における F_p -B 特性を示す。 B_{c2} の上昇 を考慮して磁束クリープ・フローモデル[2]を用いて解析した 結果、測定値と理論値に良い一致が見られた。そこで、 B_{c2} の上昇が無いと仮定した際の理論値(BH03.5*)を評価した。 その結果、 B_{c2} の上昇が高磁界下でのピンニング特性に大き な影響を与えていることが定量的に明らかになった。

Fig. 1 Characteristics of $|dB_{c2}/dT|_{T/T_c=0.95}$ versus $\pi \hat{N}_p D$.

Fig. 2 F_p - *B* characteristics of Pure, BHO, and BHO*.

謝辞

本研究は、イットリウム系超電導電力機器技術開発の一環として、 ISTEC-SRLを通じてNEDOからの委託を受けて実施したものである。

参考文献

- 1. H. Tobita et al., Supercond. Sci. Technol. 25 (2012) 062002.
- M. Kiuchi, K. Noguchi, T. Matsushita, T. Hikata, and K. Sato, Physica C 278 (1997) 62.