29p-G3-5

BaHfO₃添加量及び成膜温度の異なる SmBa₂Cu₃O_y薄膜の 超伝導特性及び微細構造観察

Superconducting properties and microstructures of SmBa₂Cu₃O_y films

with various BaHfO3 contents and substrate temperatures

名大工¹, 電中研², 九工大³, 東北大⁴, ^(M2C)鶴田 彰宏¹, 吉田 隆¹,

三浦 峻¹, 一野 祐亮¹, 一瀬 中², 松本 要³, 淡路 智⁴

Nagoya Univ.¹, CRIEPI², Kyushu Inst. Tech.³, Tohoku Univ.⁴, ^{o (M2C)} Akihiro Tsuruta¹, Yutaka Yoshida¹, Shun Miura¹, Yusuke Ichino¹, Ataru Ichinose², Kaname Matsumoto³, Satoshi Awaji⁴

E moil temmto altitica 11@

E-mail: tsuruta-akihiro11@ees.nagoya-u.ac.jp

1. はじめに

気相成長させた REBa₂Cu₃O_y (REBCO)薄膜内でナノ ロッドを形成する BaMO₃ (BMO: M = Zr, Sn)は、印加磁 場が REBCO の *c* 軸方向に平行な場合に対して有効な 1 次元の人工ピンニング点(APC)として知られている。そ の磁東ピンニング特性はナノロッドの数密度や形状に よって決定され、また、それらは BMO 添加量や成膜基 板温度に依存することが知られている^[1]。REBCO 線材 の応用上、APC の磁東ピンニング特性を制御すること 及びその各種パラメータに対する依存性を理解するこ とは非常に重要である。そこで本研究では、近年優れた BMO 材料として注目されている BaHfO₃ (BHO)^[2]を用 いて、ターゲット交換法により単結晶基板上に BHO 添 加 SmBa₂Cu₃O₃(SmBCO)薄膜を BHO 添加量及び成膜基 板温度を変化させ作製し、その超伝導特性の評価、及び 微細構造観察を行った。

2. 実験方法

全ての BHO 添加 SmBCO 薄膜は SmBCO と BHO の 2 つのターゲットを使用し、KrF エキシマレーザーを用い た PLD 法により LaAlO₃(LAO)基板上に作製した。また、 BHO 添加量はそれぞれのターゲットに照射するパルス 数比によって制御し、1.0 vol.%から 4.9 vol.%の間で変 化させた。成膜基板温度は BHO 添加量を 3.7 vol.%に固 定して 960C から 880C の間で変化させた。作製した薄 膜の結晶性、配向性を X 線回折法(XRD)、超伝導特性を 直流四端子法で測定し、微細構造観察に透過型電子顕微 鏡(TEM)を用いた。

3. 実験結果及び考察

Fig. 1 に 77 K、B//cにおける J_c の磁場依存性を示す。 また、 J_c の低下が大きくなる磁場をそれぞれ矢印で示す。 この磁場は概ねマッチング磁場と一致していると考え られる。3.7 vol.%-960C(J_c^{self} = 6.2 MA/cm²)を基準として 考えると、BHO 添加量を増加させた場合と成膜温度を 減少させた場合は、共に J_c^{self} が低下している。また、 どちらも矢印で示す磁場が高磁場にシフトしているこ とから、BHO のピンニング力がより高磁場まで有効に 働いていることがわかり、BHO ナノロッドの数密度が 増加していると推察される。Fig. 2 に T_c 及び c 軸長の (a)BHO 添加量依存性、(b)成膜温度依存性を示す。Fig. 2(a)において BHO添加量の増加に伴いc軸長が11.730 Å から 11.757 Å と伸長しているにも関わらず、 T_c は 4.9 vol.%で 92.2 K とほとんど低下していないことがわかる。 また Fig. 2(b)において、960°C から成膜温度が低下する に従い *c* 軸長が 11.749 Å から 11.759 Å まで長くなった。 (a)と比較してその増加幅は大きくないにも関わらず、 *T*_cは 90.7 K(880C)と大幅に低下していることがわかる。

共に BHO ナノロッドの数密度が増加しているが、その磁場中 J_c 及び T_c 減少の挙動は大きく異なっていた。 今後は、これらの原因を明らかにするために TEM 観察 により、定量的に BHO-SmBCO 界面積などと各種超伝 導特性の関連性について議論する予定である。

Fig. 1 Magnetic field dependence of J_c for the BaHfO₃ doped SmBa₂Cu₃O_y films.

Fig. 2 (a) BaHfO₃ content dependence and (b) substrate temperature dependence of T_c and *c*-axis length for the BaHfO₃ doped SmBa₂Cu₃O_y films.

謝辞

本研究の一部は、科学研究費補助金(23226014, 19676005)の 助成を受けて実施したものである。

参考文献

- [1] T. Ozaki et al.: J. Appl. Phys. **108** (2010) 93905
- [2] H. Tobita et al.: Supercond. Sci. Technol. 25 (2012) 062002