29p-PB1-14

AR-XPS による異なる酸化雰囲中の In_{0.53}Ga_{0.47}As の初期酸化過程の評価

Initial Stage of Oxidation on In_{0.53}Ga_{0.47}As in Different Oxidative Atmosphere Studied by AR-XPS 東京都市大工¹、東エ大フロンティア研²、東工大総理工³、

[°]櫻井 拓也¹, 沼尻 侑也¹, 山下 晃司¹, ザデ ダリューシュ², 角嶋 邦之³, 岩井 洋², 野平 博司¹ Tokyo City Univ.¹, IGSSE. Tokyo Inst. of Tech.², FRC. Tokyo Inst. of Tech.³

^oT. Sakurai¹, Y. Numajiri¹, K. Yamashita¹, D. Zade², K. Kakushima³, H. Iwai^{2,} H. Nohira¹

E-mail: g1181325@tcu.ac.jp

はじめに MOSFET の微細化以外の性能向上がい ろいろ試みられており、そのなかで期待されている 手法のひとつに高誘電率ゲート絶縁膜に高移動度チ ャネルを組み合わせる方法がある。その有力な材料 の一つとして、Si より高い電子移動度を有する InGaAs が注目されており、良好な界面特性を得られ る高誘電率絶縁膜材料の検索が精力的に行われてい る。しかし、絶縁膜 / InGaAs 界面で、As 酸化物や Ga酸化物が界面準位密度を増加させ、電気的特性を 劣化させてしまうことが報告[1]されており、 In_{0.53}Ga_{0.47}Asの初期酸化過程と酸化物/In_{0.53}Ga_{0.47}As 界面の化学結合状態を解明する必要がある。我々は、 角度分解 X 線光電子分光法 (AR-XPS) を用いて In_{0.53}Ga_{0.47}As 表面の酸素中での酸化過程を詳細に調 べた[2]。今回は、大気中での酸化過程を詳細に調べ 酸素中酸化との酸化過程の違いなどを調べたので、 それらについて報告する。

<u>実験方法</u> InP 基板上に In_{0.53}Ga_{0.47}As をエピタキシャ ル成長させた基板を HF 洗浄後、1. 高純度酸素中室 温で酸化させた試料(oxidation)、2. 大気暴露で酸化さ せた試料(air oxidation)を酸化と測定を繰り返すこと で、酸化過程を調べた。測定は、ESCA-300 (hv =1486.6eV)で、In 3d、Ga 2p、Ga 3p、As 3d、O 1s、C 1s、F 1s 光電子を脱出角度 30、90°で測定すること で評価した。なお、高純度酸素中酸化では XPS 測定 は試料を大気に晒すことなくおこなった。酸素は、 60h まで純度 99.9999%、60h 以降は、純度 99.99%を 使用した。また、どちらも酸化温度は室温 (23°C) である。

結果 Fig. 1 に大気酸化処理の場合の酸化の進行 に伴うO1s光電子スペクトルの変化を示す。ここ で、未酸化のInからの光電子強度でそれぞれ規格 化した。図から、大気暴露時間の増加と共にO原 子が増加するものの、その増加量は、徐々に減少 していることがわかる。Fig. 2 に、光電子スペクト ルの解析により求めた大気酸化の場合の未酸化の 信号に対する酸化した信号の強度比(As, Ga, In) の大気暴露時間依存性を示す。最初Asのサブオキ サイドの強度が大きい。その後、大気暴露時間の 増加と共にAsのサブオキサイドが減少すると共 にAs₂O₃の強度が増えている。これは、Asのサブ オキサイドがAs₂O₃に変わっていることを意味す る。次に、In の酸化物と Ga の酸化物は、As₂O₃ が形成後に、その強度が増加しはじめている。以 上のことは、最表面に As が存在し、暴露時間が長 くなると 2 層目 (In と Ga からなる面)の酸化が はじまることを意味している。大気暴露と酸素酸 化処理の違いも含めて、角度分解 X 線光電子分光 結果の詳細な解析結果は、当日報告する。

<u>文献</u>

- [1] Hock-Chun Chin, *et al.*, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. **57**(5), 0018-9383 (2010).
- [2] 沼尻他: 2012 年春応用物理学会, 15p-GP1-17.

Fig. 1 O 1s photoelectron spectra arising from $In_{0.53}Ga_{0.47}As$ with air oxidation treatment.

Fig. 2 Dependence of spectral intensity ratio on oxidation time.