ALD 法による HfO2/ Al Germanate/ Ge の形成

Fabrication of HfO₂ / Al Germanate/ Ge by Atomic Layer Deposition Technique

諏訪東京理科大学¹,山梨大学²

○ 花田毅広¹,梁池昂生¹,石崎博基¹,王谷洋平¹,山本千綾²,山中淳二², 佐藤哲也²,福田幸夫¹

Tokyo Univ. of Science, Suwa¹, Univ. of Yamanashi²

^oT. Hanada¹, K. Yanachi¹, H. Ishizaki¹, Y. Otani¹, C. Yamamoto², J. Yamanaka²,

T. Sato², and Y. Fukuda¹

E-mail: ishizaki@rs.suwa.tus.ac.jp

1.背景 現在,LSI の更なるスケーリングを行うた めに、High-k ゲート絶縁膜および高移動度 Ge 基板を 用いた MOS デバイスに関する研究が行なわれている。 そこで本研究では、Ge 基板上にマイクロ波生成原子 状酸素とH₂0を酸化剤に用いた ALD 法による HfO₂/A1 germanate / GeのMOS キャパシターの作成を試みた。 2.実験方法 マイクロ波により生成した原子状酸素 とトリメチルアルミニウムを交互に供給する過程を 1ALD サイクルとして、10ALD サイクル、供給し、300℃ に保持した Ge 基板上に Al germanate 薄膜を形成し た後、酸化剤である H₂0 とテトラキスジメチルアミ ノハフニウムを交互に供給する過程を 1ALD サイク ルとして、40ALD サイクル供給し、HfO₂ 薄膜を形成 した。Fig.1 に製膜装置の概略図を示す。また作製 した HfO₂/ Al germanate / Ge 上部および下部電極 に Au 電極を真空蒸着法で作製した後、N,+10%H,混合 ガス雰囲気下で30分間の熱処理を行った。またこの ときの熱処理温度は、200℃および 300℃で行ない、 熱処理温度による C-V 特性への影響について評価を 行った。

3.実験結果 Fig.2 に HfO₂/ Al germanate / p-Ge の C-V 測定結果を示す。この結果から、熱処理温度 の増加に伴い、-1.0Vにおける容量が増大している。 また熱処理温度によらず、C-V 特性からヒステリシ スが極めて小さいことがわかった。熱処理温度と CET の関係を Fig.3 に示す。熱処理温度の増加に伴い、 CET が減少している。これは、熱処理温度の増加に 伴い、HfO2 内の酸素欠陥等が減少したためであると 考えられる。

4. まとめ マイクロ波により生成した原子状酸素と H₀0 をそれぞれ、酸化剤に用いて作製した Hf0₂/ Al germanate /Ge は、熱処理温度によらず、ヒステリ シスが極めて小さいものとなった。

[謝辞] 本研究は一部科研費(基盤研究C、22560307) の補助のもとに行われた。

Fig.1 the Schematic view of ALD system

Fig. 2 C-V curves of Au/ HfO₂/ Al₂O₃/ p-Ge/ Au (a) Without metallization annealing, (b)

Fig. 3 CET vs. post metallizaition annealing temperature