29p-PB1-18

XPS による GeO₂/Ge 界面の価電子帯バンドオフセットの決定

The Valence Band Offset at GeO₂/Ge Interface Determined by Charge-corrected XPS 東大院工¹,JST-CREST²[°]張文峰^{1,2},西村 知紀^{1,2},長汐 晃輔^{1,2}, 喜多 浩之^{1,2},鳥海 明^{1,2} The Univ. of Tokyo¹, JST-CREST²[°]W.F. Zhang^{1,2}, T. Nishimura^{1,2}, K. Nagashio^{1,2} K. Kita^{1,2}, and

A. Toriumi^{1,2}

E-mail: zhang@adam.t.u-tokyo.ac.jp

Introduction The band line-up determination at GeO₂/Ge interface is essential for modeling the transport properties of GeO₂ passivated Ge-based CMOS stacks, while the reported valence band offset (VBO) by XPS scattered ~ 1.0 eV. Previously, we have reported that the charging artifact is crucial to determine the VBO for XPS measurement, and the VBO has been calibrated to be 3.6 \pm 0.2 eV by referring to the shortest irradiation time.¹ Here, we give a more precise calibration of the VBO value by using the thinnest GeO₂ as the energy reference with the shortest irradiation time.

Experimental Thermally-grown GeO₂ with different thickness were produced using the HF-last cleaned p-type Ge (100) substrate at a temperature ranging from 450 to 530 $^{\circ}$ C in 1atm oxygen. The thickness and VBO were analyzed by XPS.

Results and Discussion In our previous study, Ge^{4+} and O1*s* signals have been revealed to increase sharply then reached a saturation value with the prelonged irradiation time. These signals were further observed to progressively shift toward higher binding energy with the increase of the GeO₂ thickness ranging from 2.58nm to 5.76nm even under the single sweep, which further indicates the differential charging effect of upper GeO₂ and Ge substrate during the XPS measurement (**Fig. 1**). To further calibrate the charging artifact on the VBO determination, the valence band edge energies were shifted by the value given by the difference between the respective O 1*s* or Ge⁴⁺ peak position and the thinnest GeO₂ thickness due to its minimal charging. Thus the VBO at GeO₂/Ge interface was finally found to be 3.45 ± 0.2 eV for all oxides regardless of thickness, as shown in **Fig. 2**. Such result is consistent with our reported IPE result and **Fig. 2** inset shows the reconstructed band diagram.

Conclusion The constant VBO of 3.45±0.2 eV was obtained at GeO₂/Ge interface regardless of thickness. **Reference** [1] W.F. Zhang, T. Nishimura, K. Nagashio, K. Kita, and A. Toriumi, SSDM, 731-732 (2012)

Fig. 1 Ge 3d and O 1s peak position of the GeO_2/Ge stacks with a single sweep as a function of different GeO_2 thickness.

Fig. 2 Deconvoluted valence band spectrum of GeO_2 with different thickness, and the inset shows the reconstructed band diagram.