シリコン量子細線における弾道的フォノン熱輸送に与えるドーパント質量の影響

Impact of Dopant Mass on Ballistic Phonon Thermal Transport in Silicon Nanowires 立命館大総研¹, 立命館大理工², JST, CREST³ ^O服部 淳一^{1,3}, 宇野 重康^{2,3} Ritsumeikan Univ.¹, JST, CREST² ^OJunichi Hattori^{1,2,*} and Shigeyasu Uno^{1,2} *E-mail: jhattori@fc.ritsumei.ac.jp

背景 熱電変換デバイスにおける熱電変換効率は、デバイスを構成する熱電材料の性能指数 ZT = $S^2 \sigma T / (\kappa_e + \kappa)$ に依存している.ここで、S はゼーベック係数、 σ は電気伝導度、T は絶対温度、 κ_e は電子熱伝導度, κはフォノン熱伝導度である.シリコン量子細線(Si NW)は T ≈ 200 K で実用化 の目安である1に迫るZTを示し[1],熱電材料として注目されている.しかし、室温(T = 300 K) における ZT は 0.5 程度であり [1,2], 実用化には ZT の向上が不可欠である. ZT を高める方法の 一つに、ドーピング濃度の最適化がある.熱電変換デバイスにはn型とp型の熱電材料が必要であ るため, Si NW にはドーピングを施すことになる. S, σ及び κ_e はキャリア濃度に依存し, また, それらの依存性は互いに異なるので,高 ZT を実現するための最適なキャリア濃度が存在する [3]. したがって、そのようなキャリア濃度を狙ってドーピング濃度を調節すれば、ZT を高められるは ずである.ここで注意すべきは,κもドーピング濃度に依存することである.SiNW中に導入され たドーパントは、そのSiとの質量差によって、あるいは、原子半径の違いに由来するひずみによっ てフォノンを散乱し,熱輸送を妨げる [4]. しかし,このフォノン熱輸送に与えるドーパントの影 響については、未だ十分に調べられていない.本研究では、Si NW におけるフォノンによる熱の 弾道輸送に与えるドーパントの影響について、特に、その質量の影響に焦点を絞って解析する. 計算 まず, Figs. 1(a) 及び 1(b) に示すような単位胞を持つ²⁸Si NW について, Fig. 1(c) に示すよ うに無作為に選んだ単位胞中の一部の²⁸Siを⁷⁵Asに置換した場合のフォノン分散関係を格子動力 学法 [5] によって計算した.ただし、28Si から 75As への置換によって変わるのは原子の質量のみ とし, 平衡位置及び原子間ポテンシャルの形状は変わらないものとした. 次に, 得られた分散関係 から熱コンダクタンス [6] を計算した. その際, フォノンはいかなる散乱も受けず, 弾道的に伝導 すると仮定した.以上の計算を⁷⁵Asの数を変えて繰り返し,熱コンダクタンスの変化を調べた. 結果 Fig.2 に,熱コンダクタンスと⁷⁵As の濃度との関係を示す.⁷⁵As の濃度が高くなるにつれ て,熱コンダクタンスは小さくなると分かる.これは,純粋な²⁸Si NW における質量の空間分布 の秩序性が、⁷⁵Asのドーピングによって損なわれることに起因している。質量分布の秩序性が低 下すると、純²⁸Si NW では縮退していたフォノンモードが分裂し、分散曲線の傾きが緩やかにな る. これは群速度の低下を意味し、このために熱コンダクタンスは低下することになる.

Fig. 1. (a) Unit cell of the Si NWs considered in this work. (b, c) Cross sections of the NWs without and with dopants, which are shown by the dark atoms.

Fig. 2. Ballistic thermal conductance of ²⁸Si NWs randomly doped with ⁷⁵As, plotted as a function of ⁷⁵As concentration.

参考文献 [1] A. I. Boukai *et al.*: Nature **451** (2008) 168. [2] A. I. Hochbaum *et al.*: Nature **451** (2008) 163. [3] L. Shi *et al.*: Appl. Phys. Lett. **95** (2009) 063102. [4] M. Asheghi *et al.*: j. Appl. Phys. **91** (2002) 5079. [5] A. Paul *et al.*: J. Comput. Electron. **9** (2010) 160. [6] J. Hattori and S. Uno: Ext. Abstr. Solid State Devices and Materials, 2012, p. 672; to be published in Jpn. J. Appl. Phys.