フタロシアニン・フラーレン分子界面における FM-KFM 表面電位測定

Surface Potential Mapping on

Phthalocyanine – Fullerene Interfaces using FM-KFM

京大院工¹, 京大 SACI² ⁰北浦 宏祐¹, 野田 晃浩¹, 小林 圭², 山田 啓文¹ ¹Dept. of Electronic Sci. & Eng., Kyoto Univ., ²SACI, Kyoto Univ. [°]K. Kitaura¹, A. Noda¹, K. Kobayashi², H. Yamada¹ E-mail: k.kitaura@piezo.kuee.kyoto-u.ac.jp

[研究背景・目的] 周波数変調方式ケルビンプローブフォース顕微鏡(FM-KFM)は, 導電性の探針を 用いて探針-試料間に働く静電気力を検出することで, 試料の表面形状と同時に, 表面電位をナノ スケールの空間分解能で評価することができる手法である.われわれは, FM-AFM/KFM を用いた 単一分子スケールでの分子種識別・操作の実現を目指してモデル試料系の分子分解能観察および 表面物性評価を行っている.これまで, 二硫化モリブデン(MoS₂)基板上に堆積した, 分子内に比 較的大きな双極子モーメントを有する鉛フタロシアニン(PbPc)分子および双極子モーメントのな いフラーレン(C₆₀)分子の薄膜試料についての FM-AFM/KFM 測定の結果について報告してきた [1,2]. 今回は MoS₂ 基板上に PbPc 分子と C₆₀ 分子の両方を蒸着した系を対象に, PbPc 分子- C₆₀ 分 子界面における表面電位差に着目して FM-AFM/KFM による評価を行い, 界面ダイポールやその 原因となる PbPc 分子内永久双極子や分子間電荷授受について議論する.

[実験結果] 大気中で劈開した MoS₂ 基板を超高真空チャンバへ導入し,200℃で10時間加熱した後,基板温度を室温に戻し,C₆₀を1分子層(ML)程度蒸着した.さらに PbPc を1 ML 程度蒸着し,

FM-KFM 観察を行った結果を図1に示す. PbPc 蒸着前後の表面形状像および表面電位像の比較から、PbPc は C_{60} 超薄膜上には堆積されず、図中の領域(I)、(II)、(III)はそれぞれ C_{60} 単層膜、 C_{60} 2 層膜、PbPc 単層膜に対応していることが分かった. さらに C_{60} 単層膜と PbPc 単層膜の境界に注目 すると周囲に比べて電位が低下していることが分かった. 当日は、PbPc 分子- C_{60} 分子界面に対し てより詳細な FM-KFM 観察を行った結果について発表する.

[1] 一井崇他, 2006 年秋季 第 67 回応用物理学会学術講演会, 30a-N-4.

[2] 北浦宏祐他, 2012 年春季 第 59 回応用物理学関係連合講演会, 16a-F10-5.

図 1. MoS₂上 PbPc/C₆₀超薄膜の FM-KFM 観察像. (a)表面形状像. (b)表面電位像. (I), (II), (III)はそれぞれ, C₆₀単層膜, C₆₀2層膜, PbPc 単層膜に対応する.

プロファイル.