A first-principles study on tunneling magnetoresistance of magnetic tunnel junctions with D0₂₂-type Mn₃Ga and Mn₃Ge

RIEC & CSIS Tohoku Univ., [°]Yoshio Miura, Masafumi Shirai

E-mail: miura@riec.tohoku.ac.jp

Magnetic materials with high perpendicular magneto-crystalline anisotropy (MCA) have great advantage in the reduction of the switching current and the enhancement of the thermal stability of spin-transfer torque-switching(STT)-type magnetoresistive random access memories (so-called Spin-RAMs). Among the magnetic materials with perpendicular MCA, D0₂₂-Mn–Ga alloys have attractive features of experimentally demonstrated the high perpendicular MCA ($K_u > 1.0 \text{ MJ/m}^3$), the high Curie temperature (T_C =730K) and the small saturation magnetization (M_S =0.25µ_B/atom) due to the antiferromagnetic behavior [1,2]. Furthermore, a recent experiment succeeded to fabricate thin films of D0₂₂-MnGe and to obtain the high uniaxial anisotropy and small saturation magnetization[3].

In this study, we have investigated the spin dependent transport properties of MgO-based MTJs with $D0_{22}$ -Mn₃Ga or Mn₃Ge by using the first-principles electronic and ballistic-transport calculations. First, we calculated the band-structures of bulk $D0_{22}$ -Mn₃Ga and Mn₃Ge. We found that Mn₃Ga has the totally symmetric Δ_1 band crossing the Fermi level both in the majority- and minority-spin state in contrast to ferromagnetic transition metals such as bcc-Fe[2]. On the other hand, the Mn₃Ge has the Δ_1 band around the Fermi level only in the majority-spin state. Since the Fermi level of Mn₃Ga in the minority-spin state is located at the valence band edge of the Δ_1 state, an additional valence electron due to replacement of Ga by Ge causes the half-metallic electronic structure on the Δ_1 state. Note that the Fermi level of Mn₃Ga and Mn₃Ge in the majority-spin state is located in the middle of the Δ_1 band. This means that Mn₃Ge has a possibility to show large TMR effects in MgO-based MTJs.

Then, we calculated TMR ratios of Mn₃Ga/MgO(1nm)/Mn₃Ga(001) and Mn₃Ge/MgO(1nm)/Mn₃Ge(001) MTJs with the MnMn- and MnGa(Ge) terminations. We found that TMR ratios of Mn₃Ga-based MTJs depend strongly on the interfacial structures, which are about 600% for the MnMn termination [2] and 35% for the MnGa termination. The relatively small TMR ratio of the MnGa termination can be attributed to the presence of the Δ_1 state around the Fermi level in both spin channels. On the other hand, we obtained over 4000% TMR ratios for both the MnMn and MnGe terminations of Mn₃Ge-based MTJs due to the half-metallic electronic structure on the Δ_1 state of Mn₃Ge. Thus, we conclude that D0₂₂-Mn₃Ge is a promising material providing large TMR effects as well as high K_u and small saturation magnetization.

This work was partially supported by JSPS through the FIRST Program and by JST through ASPIMATT program.

- [1] B. Balke, et al., APL 90, (2007) 152504.
- [2] T. Kubota, et al., APEX 4, (2011) 043002.
- [3] H. Kurt, et al., APL, 101 (2012) 132410.