30a-A7-7

Enhanced interface perpendicular magnetic anisotropy in nitrogen doped Ta underlayer with CoFeB|MgO

物材機構¹, 東北大 CSIS², 東北大通研³,東北大 WPI-AIMR⁴

^Oシンハ ジャイバルダン¹、林 将光¹、小塚雅也、山ノ内路彦^{2,3}、深見俊輔²、三谷誠司¹、 宝野和博¹、大野英男^{2,3,4}

National Institute for Materials Science¹, CSIS, Tohoku Univ.², RIEC, Tohoku University³, WPI-AIMR Tohoku Univ.⁴

^OJ. Sinha¹, M. Hayashi¹, M. Kodzuka¹, M. Yamanouchi^{2,3}, S. Fukami², S. Mitani¹, K. Hono¹ and H. Ohno^{2,3,4}

E-mail: hayashi.masamitsu@nims.go.jp

Recent observation of perpendicular magnetic anisotropy (PMA) in Ta|CoFeB|MgO has drawn significant interest due to its application in magnetic random access memories. In this system, both CoFeB|MgO and Ta|CoFeB interfaces are crucial for obtaining and enhancing PMA. We investigate the PMA in Ta|CoFeB|MgO with various concentration of Nitrogen (N_2) doping in Ta underlayer and find enhanced PMA for optimally N_2 doping.

The film stacks studied are comprised of x Ta|d CoFeB|2 MgO|1 Ta (digits in nm, x and d varied suitably). A small amount of N₂ is introduced during the deposition of the Ta underlayer to study the effect of nitrogen doping of Ta on the PMA. For films with Ta and optimally N₂ doped Ta underlayers, we studied the variation of saturation magnetization (M_s) and the magnetic anisotropy (K_{eff}) as a function of effective CoFeB thickness. The effective CoFeB thickness is determined by subtracting the dead layer thickness from the nominal deposited thickness. A comparatively larger M_s for Ta underlayer stack is observed possibly due to more efficient B diffusion. We find enhanced K_{eff} for optimally N₂ doped Ta underlayer stack which helps in observation of larger K_{eff}. The role of N₂ doping in enhancing PMA will be discussed.

This work was partly supported by JSPS through its FIRST program.