## Si フォトニック結晶 MZ 型光変調器のエラーフリー動作 Error-free Operation of Si Photonic Crystal MZI Optical Modulators 横国大・院工<sup>°</sup>Hong C. Nguyen, 矢澤直哉, 橋本智志, 馬場俊彦 Yokohama Nat'l Univ., <sup>°</sup>H. C. Nguyen, N. Yazawa, S. Hashimoto, T. Baba E-mail: baba@ynu.ac.jp

Carrier-depletion, Mach-Zehnder (MZI) type silicon optical modulators can be shortened significantly by incorporating slow-light photonic crystal waveguides (PCWs). Sub-100  $\mu$ m PCW-MZIs have been demonstrated at speeds up to 40 Gb/s [1]. In this paper, we perform an in-depth study of the 10 Gb/s operation of 200  $\mu$ m PCW-MZIs, and show that they can achieve error-free operation. The device consists of a pair of 200  $\mu$ m-long SiO<sub>2</sub>-clad, p/n-diode PCWs incorporated into a symmetric MZI [1], where the PCWs have a lattice constant of 400 nm, target hole-diameter of 215 nm, and a third-row lattice-shift of 95 nm [2]. The on-chip insertion loss of the PCW-MZI is 9.2 dB. The device is driven by 10 Gb/s 2<sup>31</sup>–1 bit NRZ PRBS signals, in push-pull configuration, in the spectral range where the group index is ~20.

Fig. 1 shows the 10 Gb/s eye patterns of the modulated signal when the device is driven at different bias voltages ( $V_{DC}$ ), each at a received power of approximately –1 dBm. As shown in (a), the eye is clearly open at  $V_{DC} = -6$  V where the optimal drive voltage  $V_{pp}$  is 4.5 V and gives the lowest bit-error rate (BER) well below 10<sup>-9</sup> and is therefore error-free. When  $V_{DC}$  is reduced to –1 V, as shown in (b),  $V_{pp}$  drops to 1.4 V and BER rises to 10<sup>-6</sup>. (c) shows the eye pattern of the RF drive signal for comparison. Fig. 2 shows the variation of  $V_{pp}$ , excess loss and extinction ratio (ER) as a function of  $V_{DC}$ . The optimal  $V_{pp}$  drops with a smaller reverse-bias. While the excess loss remains constant at 1 to 2 dB, ER remains above 6 dB for  $V_{DC} \leq -3$  V, but drops to < 2 dB with a weaker reverse-bias, indicating a reduced phase-shift and modulation amplitude, resulting in an increased BER. Fig. 3 shows the BER as a function of received optical power at the photo-detector, for various  $V_{DC}$ . While error-free operation with BER < 10<sup>-9</sup> can be achieved for a strong reverse-bias, the minimum BER rises as the bias is weakened since the ER and modulation amplitudes are reduced. This work was supported in part by the FIRST Program of JSPS.

**References:** [1] H. C. Nguyen et. al, Opt. Express 20 (2012), 22465. [2] M. Shinkawa et. al., Opt. Express 19 (2011), 22208.

