30a-D1-1

半導体レーザーカオスと He-Ne レーザーを用いた広帯域 THz 波の発生

Generation of wide range THz waves using semiconductor laser chaos and a He-Ne laser 福井工大¹,福井大遠赤セ²,福井大教育³,阪大レーザー研⁴,福井大名誉教授⁵ ⁰衆島史欣¹,白尾拓也¹,山下雄大¹,谷正彦²,栗原一嘉³,山本 晃司²,萩行正憲⁴,長島健⁴, 岩澤宏⁵

FUT¹, FIR FU², Univ. Fukui³, Inst. of Laser Eng. Osaka Univ.⁴, Professor Emeritus, Univ. Fukui⁵
[°]Fumiyoshi Kuwashima¹, Takuya Shirao¹, Yuuki Yamashita¹, Masahiko Tani², Kazuyoshi Kurihara³, Kohji Yamamoto², Masanori Hangyo⁴, Takeshi Nagashima⁴, Hiroshi Iwasawa⁵

E-mail: kuwashima@fukui-ut.ac.jp

光伝導アンテナにレーザー光を照射して THz 波を発生させる方法では,フェムト秒レーザーを 用いる方法が主であるが,フェムト秒レーザーが高価であり,装置全体のコストを引き上げてし まう。一方,安価な半導体レーザーを用いる方法も開発されたが,マルチモード,あるいは連続 スペクトル発生の場合には安定性に欠け,帯域も0.5 THz 以下に限られる。これまでの研究で, 外部鏡を用い光学的遅延帰還を加えることで,単体のレーザーの空間的コヒーレンスを保ったま ま多モード化しスペクトルが広くなるレーザーカオス光を光伝導アンテナの励起光源として用

いることで,発生する THz 波が安定化し, 更に広帯域化した。今回,更なる広帯域化 を目指して,カオス発振させた半導体レー ザー(639nm, 30mW, Opnext HL6323MG)に, He-Ne(632.8 nm, 15mW, Edmund, 1145P)を 加えた. He-Ne レーザーは,利得幅が 1.5GHz 程度しかなく,発振周波数が安定し ている.また横モードはシングルであり, 波面が奇麗なのも特徴である.(Fig.1)

Fig.2 に、振幅の S/N の比較を示した。半 導体外部鏡 (R₃) による戻り光を加えレーザー をカオス発振させ, He-Ne レーザーを混合し た場合, レーザー光をエミッターに照射しな い場合 (ノイズレベル) に比べ, 振幅の S/N=107 が得られた。今回戻り光は $R_{3(eff)}=0.148\%$ と小 さかったが,数倍程度 S/N が改善されている ことも報告する.

Fig.1 Experimental setup

Fig.2 S/N of THz waves