量子ドット半導体レーザにおけるカオス同期 Chaos Synchronization in Quantum Dot Semiconductor Lasers 静大院工¹,静大工² ○成瀬 友貴¹, 生源寺 類², 大坪 順次² Shizuoka Univ. ○Yuki Naruse, Rui Shogenji, Junji Ohtsubo

E-mail: tajohts@ipc.shizuoka.ac.jp

1. はじめに

量子ドット半導体レーザとは、活性層に量子 ドットと呼ばれる10nm程度の半導体ナノ結晶を用 いたレーザである。量子ドットは電子を3次元的に 閉じ込めることができるので、電子のエネルギ状 態を完全に離散化することができる。そのため に、量子ドット半導体レーザは従来のレーザに比 べて優れた特性が期待でき、将来の光通信用光源 として期待されている。

半導体レーザの通信への応用として、カオス同 期を利用したカオス秘匿通信が提案されている。 近年、量子井戸半導体レーザを用いたカオス同期 は数多く研究されているが、量子ドット半導体 レーザでの報告は少ない。

本研究では、以上のことをふまえて、量子ドッ ト半導体レーザを用いたカオス同期について数値 計算によって調べ、量子井戸半導体レーザとの比 較を行った。

2. 数値計算モデル

数値計算で用いた量子ドット半導体レーザの レート方程式を以下で示す。

$$\frac{dE_{T}(t)}{dt} = \frac{1}{2}(1-i\alpha)[g_{0}\vartheta\{2\rho_{T}(t)-1\} - \frac{1}{\tau_{ph}}]E_{T}(t) \\
+ \frac{\kappa_{FB}}{\tau_{in}}E_{T}(t-\tau_{ext})\exp(i\omega_{0}\tau_{ext}) \quad (1) \\
\frac{dE_{R}(t)}{dt} = \frac{1}{2}(1-i\alpha)[g_{0}\vartheta\{2\rho_{R}(t)-1\} - \frac{1}{\tau_{ph}}]E_{R}(t) \\
+ \frac{\kappa_{c}}{\tau_{in}}E_{T}(t-\tau_{c})\exp\{i(-\Delta\omega t+\omega_{0}\tau_{c})\} \quad (2) \\
\frac{dn_{T,R}(t)}{dt} = \frac{J_{T,R}}{e} - \frac{n_{T,R}(t)}{\tau_{s}} - 2[\frac{n_{T,R}(t)}{\tau_{cap}}\{1-\rho_{T,R}(t)\} - \frac{N_{d}\rho_{T,R}(t)}{\tau_{esc}}](3) \\
\frac{d\rho_{T,R}(t)}{dt} = -\frac{\rho_{T,R}(t)}{\tau_{s}} - g_{0}\{\rho_{T,R}(t)-1\}|E_{T,R}(t)|^{2} \quad (4)$$

式(1)は送信レーザの電場、式(2)は受信レーザの 電場、式(3)、(4)は各レーザの量子ドットとウェ ティングレイヤのキャリア密度を示す。式(1)の第 2項が戻り光を、式(2)の第2項が送信レーザから 受信レーザへの注入光を表している。次節の結果 では、戻り光率を一定として、送信レーザから受 信レーザへの光注入率とレーザ間の周波数離調に よるカオス同期精度への影響を調査する。

3. 数值計算結果

Fig. 1は、縦軸を注入率、横軸を周波数離調とし て、送信レーザと受信レーザの光出力の相互相関 係数を3次元的にプロットした相関係数マップを示 す。量子ドットレーザは、量子井戸レーザに比べ て出力のカオス化に必要な戻り光率が大きいの で、異なる戻り光率を用いている。Fig. 1より、量 子ドットレーザと量子井戸レーザを比較すると、 相関係数の値が0.9を超える領域が大きく異なる様 子が見られる。この相関係数が高い領域は、戻り 光を考慮しない場合での光注入ロッキングが生じ る領域とほぼ一致している。量子ドットレーザ は、量子井戸レーザよりも低注入率における注入 ロッキング範囲が広いために、低注入率で相関係 数が高い領域を広く持つ。パラメータの影響として は、離調を一定とした場合、両方のレーザで注入 率の増加に伴い相関係数の値が増加する傾向が見 られる。一方で、注入率を一定として考えた場合で は、量子井戸レーザは負離調側の方が相関係数が 高いのに対して、量子ドットレーザは正離調側の方 が相関係数が高い。

4. まとめ

本研究では、量子ドット半導体レーザでのカオ ス同期について調査し、量子井戸半導体レーザと の比較を行った。量子ドットレーザと量子井戸 レーザでは、注入ロッキングが生じる領域が異な るために、相関係数が高い領域が異なることが確 認できた。また、離調を考慮した相関係数におい て、量子ドットと量子井戸では異なる様子が確認 できた。