
多層膜プリカーサーを用いた Y₂O₂Bi 薄膜の固相エピタキシャル成長

Solid phase epitaxial growth of Y₂O₂Bi thin films via multilayered precursor 東大院理¹, JST-CREST² [○]清 良輔¹, 福村 知昭^{1,2}, 長谷川 哲也^{1,2}

Univ. of Tokyo ¹, JST-CREST², [°]Ryosuke Sei¹, Tomoteru Fukumura^{1,2}, Tetsuya Hasegawa^{1,2} E-mail: sei@chem.s.u-tokyo.ac.jp

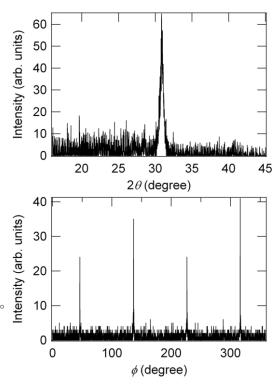

層状 Bi 酸化物 R_2O_2 Bi(R= 希土類、Y)の多結晶体が合成され、その金属絶縁体転移が報告された [1]。 R_2O_2 Bi 中のBi は異常価数-2 価を持ち、さらに二次元正方格子を形成した独特な層状構造を示す(Fig. 1)。 したがって、この物質では大きなスピン軌道相互作用に起因したトポロジカル絶縁体としての性質を示す可能性もある [2]。 R_2O_2 Bi のイントリンシックな物性を引きだすためには、単結晶やエピタキシャル薄膜の合成が望ましい。そこで、本研究では Y_2O_2 Bi のエピタキシャル薄膜の作製を試みた。

Fig. 1 Crystal structure of R_2O_2Bi .

前回、 Y_2O_3 薄膜とBi, Y 粉末を前駆体として、固相 エピタキシーを利用した Y_2O_2Bi エピタキシャル薄膜 の初めての作製を報告した [3]。しかしながら、作製 した薄膜では未反応相や表面の粉末残渣が多く存在 し、物性評価が困難であった。そこで、前駆体をす べて薄膜とすることで、平坦かつ均質な薄膜の作製 を試みた。

スパッタ法を用いて、 Bi, Y, Y_2O_3 の各層からなる多層膜を CaF_2 (001)単結晶基板上に堆積した。そして、その多層膜を真空中で焼成して固相反応を行った。その結果、4 回対称 Y_2O_2Bi (103)ピークを示す Y_2O_2Bi エピタキシャル薄膜を作製することができた (Fig. 2)。前回の手法による試料に比べて組成分布が均質であり、平坦な表面を示した。X 線回折測定から、薄膜と基板の方位の関係は、 Y_2O_2Bi [100] $\|$ CaF_2 [110], Y_2O_2Bi [001] $\|$ CaF_2 [001]であった。講演では、電気伝導特性や磁気特性についても議論を行う予定である。

Fig. 2 2θ - θ (top) and ϕ (bottom) scans of Y_2O_2Bi (103) epitaxial thin film.

参考文献

- [1] H. Mizoguchi et al., J. Am. Chem. Soc. 133, 2394 (2011).
- [2] M. Z. Hasan et al., Rev. Mod. Phys. 82, 3045 (2010).
- [3] 清他、2012年秋季応用物理学会 14p-C9-4