30a-F1-9

CaH2による SrFeO2薄膜へのトポタクティック水素注入

Topotactic hydrogen doping into SrFeO₂ thin films by CaH₂

東大院理¹, JST-CREST², KAST³ ⁰片山司¹, 近松彰^{1,2}, 廣瀬靖^{1,2,3}, 福村知昭^{1,2},

長谷川哲也 1,2,3

Univ. of Tokyo¹, JST-CREST², KAST³ ^OT. Katayama¹, A. Chikamatsu^{1,2}, Y. Hirose^{1,2,3},

T. Fukumura^{1,2}, T. Hasegawa^{1,2,3}

E-mail: katayama@chem.s.u-tokyo.ac.jp

【はじめに】CaH₂を用いた固相還元により鉄系無限層構造酸化物 SrFeO₂ が合成され、高温超伝 導体の母物質である SrCuO₂ と同一の構造を持つことから注目を集めている[1]。前回我々は KTaO₃(001)基板上の SrFeO₂薄膜(SrFeO₂/KTO)がバルク体 SrFeO₂ とは異なり、金属的な電気伝導性 を示すことを報告した[2]。また最近、ペロブスカイト型酸化物を CaH₂ 処理するとヒドリドイオ ン(H)が導入され、伝導キャリアが生じることが報告された[3]。バルク体 SrFeO₂には水素は含ま れていないことが知られているが[1]、今回 SrFeO₂薄膜中に ~5×10²¹ atom cm⁻³の水素が存在する ことを見出したので報告する。

【実験方法】パルスレーザー堆積法で作製した前駆体 SrFeO_{3-δ}薄膜を CaH₂ 試薬とともに真空封入し還元 (240-280°C、24 時間)することにより、無限層構造を持つ SrFeO₂薄膜(膜厚 ~70 nm)を作製した。得られた薄膜の 結晶構造は X 線回折(XRD)により確認した。電気抵抗率は 四端子法・二端子法により測定した。水素濃度は二次イオ ン質量分析法(SIMS)を用いて測定し、標準試料には SrTiO₃ を用いた。

【結果と考察】 250°C で還元処理した SrFeO₂/KTO におけ る水素濃度の深さ依存性を図 1 に示す。深くなるに従い水 素濃度は増大し、50 nm 付近では ~5 × 10^{21} atom cm⁻³に達 した。薄膜で高濃度の水素が検出されたのは、拡散が十分 に進行したためと考えられる。一方、280°C で還元した SrFeO₂/KTO では、水素濃度は ~ 1.6×10^{21} atom cm⁻³ と 250°C 還元薄膜の約 1/3 であった。これは、高温度で水素 が膜内から脱離することを示唆している。

電気抵抗率 ρ の温度依存性、並びに ρ (300 K)と結晶性との関係を図 2 に示す。SrFeO₂(002)ロッキングカーブの半値幅($\Delta \omega$ (002))が小さいほど、すなわち結晶性が良いほど ρ は減少し、最も結晶性の良い 250°C 還元 SrFeO₂/KTO は金属的挙動を示した。キャリアは n 型であり、その生成機構としては、(1) HのO²サイトへの置換、(2) H⁺の層間への挿入の 2 つが考えられる。

講演では、水素濃度とキャリア濃度の関係や輸送特性に ついても議論する。

- [1] Y. Tsujimoto et al., Nature 450, 1062 (2007).
- [2] 片山司他; 第73 回応用物理学会 11a-PA1-8
- [3] Y. Kobayashi et al., Nat. Mater. 11, 507 (2012).

Fig. 1. Dynamic SIMS depth profiles of Sr+O, Fe, O, and H secondary ions in the $SrFeO_2$ film on KTO prepared at 250°C.

Fig. 2. ρ -*T* curves for SrFeO₂ films prepared at 250°C on STO and KTO. Inset shows $\rho(300 \text{ K})$ as a function of $\Delta \omega(002)$ for SrFeO₂ films prepared at 240-280°C on STO (\blacktriangle) and on KTO (\bullet).