30p-A6-4

同一平面 transXend 検出器に用いるシンチレータ材料の再検討

Reconsideration of scintillator materials for the best flat plane transXend detector

京大院工¹,トクヤマ², [○]北原 理¹,山下良樹¹,島 一成¹,神野郁夫¹,福田健太郎²,

原子力機構³, レイテック⁴ 大高 雅彦³, 橋本 周³, 荒 邦章³, 尾鍋秀明⁴

Kyoto University¹, Tokuyama Corp.², ^OM.Kitahara¹, Y.Yamashita¹, K.Shima¹, I.Kanno¹, K.Fukuda²,

JAEA³, Raytech Corp.⁴ M.Ohtaka³, M.Hashimoto³, K.Ara³, H.Onabe⁴

E-mail : kitahara.masaru.25s@st.kyoto-u.ac.jp

1. 緒言 当研究室では低被曝 X 線 CTを目的とした transXend 検出器を考案し、あるエネルギー範囲の X 線イベント 数のみを抽出して解析することで、造影剤に対してコントラストの高い画像を取得するエネルギー分解 CT 法を提案し ている。従来用いてきた Si(Li)半導体検出器に代わり、多種類のシンチレータ結晶を同一平面上に配置した新たな検 出器を作製し、エネルギー分解 CT 測定を行った。

2. 無機シンチレータの種類 まず、厚さ 3,6mm のフッ化物系シンチレータ A~D を 4 分割型フォトダイオード上に配置し、ヨウ素を含むファントムに対してエネルギー分解 CT 測定を行ったところ、X 線吸収度の小さい A のみ厚さを厚く

(3→6mm)することで計算精度は高くなることが分かった¹⁾。一方、 Si(Li)検出器と比べると精度は悪かった。これは、A 以外の結晶の吸 収度に顕著な差がないこと、Si(Li)に比べてシンチレータは応答(電流 値)が収束するまでの時間が長いこと、また、厚さ6mmのAでも、約1/3 の X 線が透過することも原因として考えられる。そこで新たに結晶 E,F,Gを用意し(Table 1)、さらに、A については厚さ9mmの結晶も用意 してエネルギー分解 CT 測定を行い、比較した。

Table I シノナレータ特性衣.			
	組成	(g/cm ³)	$\mathbf{Z}_{\mathrm{eff}}$
A	CaF ₂ : Tb	3.20	30
В	$(Sr_{0.6}Ba_{0.4})F_2:Tb$	4.50	47
С	$(Sr_{0.1}Ba_{0.9})F_2:Tb$	4.80	52
D	BaF ₂ : Tb	4.90	54
Е	$(Sr_{0.9}Ba_{0.1})F_2$: Tb	4.20	40~42
F	Lu _{1.8} Y _{0.2} SiO ₅ : Ce	7.10	63~66
G	BGO	7.13	72~74

> 4+ 14 +

3. 測定方法 [1] A-D-E-F (6mm), [2] A-E-F-G (6mm), [3] A(9mm)-E(6mm)-F(3mm)-G(3mm), [4] B-E-F-G (6mm) (A 不使用)の 組み合わせの検出器を用いて厚さの異なる二つのヨウ素領域

(7.5µm,30µm)を含むファントムに対して管電圧 100kV,管電流 2mA の X 線を照射した。解析結果について、従来の Si(Li)検出器による結果と比較した。エネルギー範囲は E1:15-33keV, E2:33-40keV, E3: 40-70keV, E4:70-100keV と

した。

4. 結果 ファントム中心軸上の CT 値(吸収係数)の結果について Fig.1 に示す。[1]~[4]の検出器の中で均等な厚さの結晶 A,F,G を 用いた [2]の場合、全てのエネルギー範囲に対する計算結果の精 度は高く,Si(Li)と遜色ない結果が得られた。一方、厚さが不均一な [3]の場合、[2]と比べて誤差が大きかった。これは、不均一厚さのた め各結晶からの散乱 X 線によるクロストークや、厚さ 9mm の A では 応答が収束するまでの時間が 6mm のものの 2 倍程度かかっている ことから、透過 X 線の遅れ応答も大きな原因として考えられる。応答 安定性が良い新たな結晶材料の導入についても検討し、最適な組 み合わせを模索した後、複数個の検出器を配置したラインセンサへ の応用を目指していく予定である。

参考 1) I.Kanno, et al., J.Nucl. Sci. and Technol., 48, 1377-1384 (2011).