30p-A7-1

MBE 法により作製したエピタキシャル Co₃FeN 薄膜の XMCD 測定

X-ray magnetic circular dichroism of epitaxial Co₃FeN thin film grown by MBE 筑波大院 数理物質科学研究科¹, 原子力機構 SPring-8², 産総研³, 広島大院 理学研究科⁴ [°]伊藤啓太¹, 佐内辰徳¹, 安富陽子¹, 都甲薫¹, 竹田幸治², 齋藤祐児², 今井庸二³, 木村昭夫⁴ 末益崇¹ Inst. of Appl. Phys., Univ. of Tsukuba¹, SPring-8, JAEA², AIST³, Grad. Sch. Sci., Hiroshima Univ.⁴ [°]K. Ito¹, T. Sanai¹, Y. Yasutomi¹, K. Toko¹, Y. Takeda², Y. Saitoh², Y. Imai³, A. Kimura⁴ and T. Suemasu¹ E-mail: bk200511420@s.bk.tsukuba.ac.jp

【はじめに】 我々は、新たなスピントロニクス材料として、Co_xFe_{4-x}N に注目している。Fe₄N、Co₄N、Co₃FeN は、理論計算から大きな負のスピン分極が予想されており¹⁻³、Co₃FeN については、ハーフメタル性が予想されている。これまでに、分子線エピタキシー(MBE)法により、SrTiO₃(STO)(001) 基板上への Fe₄N、Co₄N、Co₃FeN のエピタキシャル成長に成功した⁴⁻⁶。また、Fe₄N と Co₄N の磁気モーメントの大きさを、X線磁気円二色性(XMCD)測定によって評価した^{7.8)}。Co₃FeN については、バルクおよび薄膜試料の作製例がほとんど無く、基本的な磁気物性の評価が進んでいない。本研究ではXMCD 測定により、MBE 法により作製した Co₃FeN 薄膜の磁気モーメントを評価した。 【実験】 MBE 法により、格子不整合率が 3.9%の STO(001)基板上に、基板温度 450°C で固体 Fe とCo、RF-N₂を同時供給し、Co₃FeN(10 nm)薄膜を成長した。続いて、酸化防止のために CaF₂(2 nm)を室温で堆積した。RHEED、 $\theta 2\theta$ XRD により結晶性を、XMCD 測定により磁気特性を評価した。 XMCD 測定は、300 K にて試料の面直方向に±3 T の磁場を印加し、飽和磁化状態で行った。

【結果】図1に Co₃FeN 薄膜の RHEED 像と $\theta 2\theta XRD$ パターンを示す。RHEED はストリークとな り、XRD には Co₃FeN(002),(004)のピークのみが現れたことから、エピタキシャル成長に成功した といえる。図2に Co₃FeN 薄膜の Fe $L_{2,3}$ 端、Co $L_{2,3}$ 端、N K 端の XMCD スペクトルを示す。それ ぞれの吸収端で明瞭な MCD スペクトルが観測され、N の MCD の符号が Fe、Co の逆となり、Co₄N と同じ傾向を示した。純 Fe、純 Co の標準スペクトルと Co₃FeN のスペクトルに磁気光学総和則を 適用し、Co₃FeN の 3d 軌道のホール数(n_h)と原子 1 個当たりのスピン(m_{spin})および軌道磁気モーメ ント(m_{orb})を算出した。結果は、 n_h (Fe)=4.02±0.37、 m_{spin} (Fe)=1.84±0.11 μ_B 、 m_{orb} (Fe)=0.11±0.01 μ_B 、 n_h (Co)=2.59±0.30、 m_{spin} (Co)=1.47±0.13 μ_B 、 m_{orb} (Co)=0.15±0.01 μ_B となった。図3に XMCD 測定の結 果から算出した Co_xFe_{4-x}N の Co/Fe 比と、ユニットセル当たりの m_{spin} 、 m_{orb} の関係を示す。Co/Fe 比の増加に伴い m_{spin} が減少し、プロットが直線上にのる傾向がみられた。

【謝辞】XMCD 測定はナノネット支援課題(2012B3804)のもと、日本原子力研究開発機構 SPring-8 BL23SU にて行った。

1)S. Kokado *et al.*, Phys. Rev. B **73**, 172410 (2006). 2)Y. Imai *et al.*, J. Magn. Magn. Mater. **322**, 2665 (2010). 3)Y. Takahashi *et al.*, J. Magn. Magn. Mater. **323**, 2941 (2011). 4)K. Ito *et al.*, J. Cryst. Growth **322**, 63 (2011). 5)K. Ito *et al.*, J. Cryst. Growth **336**, 40 (2011). 6)T. Sanai *et al.*, J. Cryst. Growth **357**, 53 (2012). 7)K. Ito *et al.*, Appl. Phys. Lett. **98**, 102507 (2011). 8)K. Ito *et al.*, Appl. Phys. Lett. **99**, 252501 (2011).

図 3 Co_xFe_{4-x}N のスピンおよび軌道 磁気モーメント