30p-A7-7

Influence of interface termination layer on temperature dependence of tunneling magnetoresistance of Co₂MnSi/MgO-based magnetic tunnel junctions

^OHong-xi Liu¹, Yusuke Honda¹, Ken-ichi Matsuda¹, Tetsuya Uemura¹, Masafumi Yamamoto¹, Fengyuan Shi², and Paul M. Voyles²

¹Division of Electronics for Informatics, Hokkaido University, Sapporo 060-0814, Japan ²Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison 53706, USA

We have recently demonstrated giant tunneling magnetoresistance (TMR) ratios (β) of up to 1995% at 4.2 K and up to 354% at 290 K for epitaxial Co₂MnSi (CMS)/MgO/CMS magnetic tunnel junctions (MTJs).¹ If we use parameter $\gamma = \beta(4.2 \text{ K})/\beta(290 \text{ K})$ to represent the degree of temperature (*T*) dependence of β , γ for the CMS MTJs that showed a high β of 1910% at 4.2 K was 5.4, resulting in a lower β of 354% at 290 K than the 604% at RT for a CoFeB/MgO/CoFeB MTJ that exhibited a much lower β of 1144% at 5 K ($\gamma = 1.9$).² The purpose of the present study was to investigate the possible origin of the strong *T* dependence of β of CMS/MgO-based MTJs. In this study, we prepared epitaxial MTJs having a CMS electrode in combination with a Co₅₀Fe₅₀ (CoFe) electrode and a MgO barrier and prepared three kinds of MTJ layer structures on MgO(001) substrates: (1) MTJ-1: (from the lower side) CoFe/MgO/CMS (3 nm), (2) MTJ-2: CoFe-buffer/CMS (3 nm)/MgO/CoFe (3 nm), and (3) MTJ-3: CoFe/MgO/ultrathin CoFe inserted layer (1.1 nm)/CMS (3 nm). We used Mn-rich CMS electrodes^{3,4} having a film composition of Co₂Mn_{1,29}Si_{1,0} for MTJ-1 and a film composition of Co₂Mn_{1,35}Si_{0.88} for MTJ-2 and MTJ-3.

Figure 1 shows β as a function of *T* from 4.2 K to 290 K for these three kinds of MTJs. We first compare the *T* dependence of β for MTJ-1 and MTJ-2. It has been experimentally shown that harmful Co_{Mn} antisites are strongly suppressed for Mn-rich CMS electrodes,^{1,3,4} suggesting that the bare tunneling spin polarizations that are determined by the majority- and minority-spin density of states at the Fermi level are close for the Mn-rich CMS electrodes having the almost identical film compositions used in this study. Then, the higher β value at 4.2 K for MTJ-1 than MTJ-2 has been attributed to the enhanced coherent tunneling contribution arising from the larger misfit dislocation spacing for MTJ-1.⁴ According to the theory by Zhang *et al.*,⁵ if the bare tunneling spin polarizations and the properties of thermally excited magnons are close for MTJ-1 and MTJ-2, γ should be close. Note that, however, MTJ-1 showed much stronger *T* dependence of β ($\gamma = 3.3$) than MTJ-2 ($\gamma = 2.6$), resulting in a slightly lower β of 311% at 290 K for MTJ-1 than the 340% for MTJ-2 although the latter exhibited a markedly lower β at 4.2 K.

To clarify the origin of the difference in the *T* dependence of β , we investigated the interface structure of these MTJs by high-resolution Z-contrasted scanning transmission electron microscopy. We found that the termination layer at the CMS/MgO interface for MTJ-2 mainly consisted of MnMn/O termination layer⁶ which has been theoretically predicted to be thermodynamically unstable.⁷ On the other hand, we found that the termination layer for MTJ-1 consisted of coexisting MnMn/O and CoCo/O terminations with one

monolayer steps probably caused by the very flat interface in MTJ-1. Given the observation of CoCo/O terminations coexisted with MnMn/O terminations, we attribute the stronger T dependence of MTJ-1 to the theoretically predicted strong spin fluctuation of Co atoms in the Co plane of CMS in the interfacial region with a MgO barrier.⁸

To further evidence this understanding, we prepared MTJ-3 in which an ultrathin CoFe layer (1.1 nm) was inserted between the MgO barrier and the upper CMS electrode. Most importantly, the *T* dependence of β was significantly weakened ($\gamma = 2.5$). This resulted in a much higher β of 448% at 290 K. The markedly enhanced β at RT for MTJ-3 can be explained by the elimination of the CMS/MgO interface, including in particular, the CoCo/O termination, observed in MTJ-1.

1) H.-x. Liu *et al*, APL **101**, 132418 (2012). 2) S. Ikeda *et al.*, APL **93**, 082508 (2008). 3) T. Ishikawa *et al.*, APL **95**, 232512 (2009). 4) H.-x. Liu *et al*, JJAP **51**, 093004 (2012). 5) S. Zhang *et al.*, PRL **79**, 3744 (1997). 6) F. Shi *et al.*, to be presented at 12th joint MMM/Intermag conference, AI-01, Chicago, January 2013. 7) Y. Miura *et al.*, PRB **78**, 064416 (2008). 8) Y. Miura *et al.*, PRB **83**, 214411 (2011).

Fig. 1. TMR ratios as a function of *T* from 4.2 K to 290 K for a CoFe/MgO/CMS (MTJ-1), a CoFe-buffered CMS/MgO/CoFe (MTJ-2) and a CoFe/MgO/CoFe (1.1 nm)/CMS (MTJ-3). For comparison, TMR ratios as a function of *T* for an identically fabricated CoFe/MgO/CoFe are plotted.