Tunnel magnetoresistance effect in Fe/MgO/Fe₂O₃/Fe/IrMn junctions

AIST Spintronics Research Center¹, CREST-JST² [°]Takayuki Nozaki^{1,2}, Hitoshi Kubota^{1,2}, Akio Fukushima^{1,2}, Shinji Yuasa^{1,2} E-mail: nozaki-t@aist.go.jp

A ferromagnetic oxide tunneling barrier has been widely investigated for the realization of high magnetoresistance effect or a highly-efficient spin injection source through the spin filtering effect. And recently, spin transfer torque in these materials also attracts a new interest. However, high tunneling magnetoresistance effect exceeding 100% at room temperature have never been reported in a magnetic tunnel junction with a ferromagnetic oxide barrier. Possible reasons are difficulty in the formation of a high-quality thin layer without an oxygen defect and poor magnetization reversal property of ferromagnetic oxide materials. In this study, we fabricated a fully epitaxial magnetic tunnel junction, consisting of Fe(50 nm)/MgO (2 nm)/ γ -Fe₂O₃ (t_{FeO})/Fe (10 nm)/IrMn(10 nm) and investigated the tunnel magnetoresistance effect through the ferromagnetic oxide γ -Fe₂O₃ layer.

Multilayers were deposited on a single crystal MgO(001) substrate by molecular beam epitaxy. A γ -Fe₂O₃ layer was synthesized by depositing metal Fe in atomic oxygen atmosphere supplied from a thermal gas cracker. MgO barrier was introduced for the template of epitaxial growth of the γ -Fe₂O₃ layer and also for preventing the magnetic coupling between the bottom Fe and γ -Fe₂O₃ layers. In order to improve the magnetization reversal property of the thin γ -Fe₂O₃ layer, an Fe layer of 10 nm was deposited on it and exchange-coupled by a sputter-deposited IrMn layer. The film was patterned into magnetic tunnel junctions of $3 \times 12 \ \mu m$ in size.

Owing to the exchange coupling with the top Fe layer, very steep magnetization reversal of the reference layer was obtained (not shown here). Figure 1 shows a γ -Fe₂O₃ thickness (t_{FeO}) dependence of resistance area (RA) product (\bullet) and MR ratio(\bullet). The RA value increases exponentially with increasing the t_{FeO} , indicating that the high-quality tunneling barrier is formed, and the observed MR effect originates from the tunneling through the γ -Fe₂O₃ layer. The MR ratio

Fig.1 The γ -Fe₂O₃ layer thickness dependence of the RA value and MR ratio in Fe / MgO / γ -Fe₂O₃ / Fe / IrMn junctions.

decreases monotonically in the thin thickness region of $t_{\text{FeO}} < 0.2$ nm, however, interestingly, clear recover of the MR ratio up to 120% was observed at around $t_{\text{FeO}} = 0.3$ nm. This value is almost comparable to the one obtained in the Fe / MgO / Fe junction (140%).