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Carbon nanomaterials, i.e., single-wall carbon nano-

tubes (SWCNTs) and graphene, attract much attention due 
to novel electronic, photonic, and mechanical properties 
that can find application in a variety of devices [1–4].  In 
particular, they have promising properties for developing 
optoelectronic devices at long wavelengths, i.e., in the 
mid-infrared (MIR) and terahertz (THz) ranges, including 
polarizers, modulators, detectors, and sources.  It has been 
predicted that they have superior performance over existing 
devices in these ranges [5]. 

 
During the past decade, a large number of fundamental 

optical spectroscopy studies have been performed on these 
materials, establishing the basic properties of 
one-dimensional carriers, excitons, and phonons.  Howev-
er, most of these studies were carried out in the 
weak-excitation, quasi-equilibrium regime.  In order to 
probe and assess their performance characteristics as opto-
electronic materials under device-operating conditions, it is 
desirable to strongly drive them and examine their optical 
properties under highly non-equilibrium conditions. 

 
In this presentation, we will summarize recent results of 

our experimental studies of the THz and ultrafast dynamics 
of carriers and phonons performed on graphene [7–9] and 
SWCNTs [10–16].  We use time-domain THz spectros-
copy to probe frequency-dependent optical conductivities 
and determine the density and scattering time of 
low-dimensional charge carriers.  Gate-tunable Fermi en-
ergies in graphene can be used to effectively modulate the 
transmission of THz waves [7].  In addition, when gra-
phene is placed on a grating, normal incidence THz radia-
tion can excite a propagating surface plasmon polariton [8], 
which can be used as a notch filter.  We further demon-
strate that the modulation contrast ratio can be significantly 
enhanced by placing a metallic aperture on graphene via the 
effect of the extraordinary optical transmission [9]. 

 
Free carrier absorption in metallic and doped semicon-

ducting SWCNTs occurs in the form of plasmon resonance, 
which can be excited when the incident THz wave is line-
arly polarized along the nanotube axis.  We have demon-
strated the plasmonic nature of THz/MIR absorption in 
type-separated SWCNT samples [11], and the effect can be 
collectively enhanced when a macroscopic number of 
SWCNTs are aligned [10]. 

 
Finally, ultrafast optical spectroscopy allows us to make 

time-domain observations of coherent lattice vibrations 
[12,14,15,16].  Using femtosecond pump-probe differen-
tial transmission spectroscopy, we have observed coherent 
phonons (CPs) corresponding to the low-frequency radial 
breathing mode (RBM) and the high-frequency G-mode.  
CP signals can be resonantly enhanced when the pump 
pulse resonantly excites excitons (interband excitation), 
allowing us to obtain precise information on the nanotube 
chiralities present in a given SWCNT ensemble.  Fur-
thermore, because the bandgap and diameter in SWCNTs 
are inversely proportional to each other, the bandgap co-
herently oscillates as the lattice undergoes coherent RBM 
oscillations [14], resulting in modulation of interband opti-
cal absorption at THz frequencies 
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