第75回応用物理学会秋季学術講演会 講演予稿集(2014秋 北海道大学)

17a-S2-4

Pd/Co/Pt 積層構造における磁性の電界制御

Electric field control of magnetism in Pd/Co/Pt multilayer 東大物工¹, 電中研²^O大日方 約¹, 早川 大智¹, 日比野 有岐¹, 小山 知弘¹, 三輪 一元², 小野 新平², 千葉 大地¹

The Univ. of Tokyo¹, CRIEPI², ^OAya Obinata¹, Daichi Hayakawa¹, Yuki Hibino¹, Tomohiro Koyama¹, Kazumoto Miwa², Shimpei Ono², and Daichi Chiba¹

E-mail: aobinata@cblb.t.u-tokyo.ac.jp

Recently, control of magnetic properties of ferromagnetic metals by applying gate electric field with a capacitor structure has attracted attention in the research field of spintronics ^{1,2}. An electric field control of an electron density at the surface of a ferromagnetic metal adjacent to a gate insulator layer plays a main role to cause the change in the magnetic properties of the system. On the other hand, it is known that the magnetic moment is induced in a layer made of Pd, which is normally a non-magnetic element, by contacting it with that of a ferromagnetic transition metal element ³. Here we report a control of the induced magnetic moment in the Pd layer by applying an electric field.

We deposited MgO/Pd(1.7 nm)/Co(t_{Co})/Pt(4.1)/Ta from the surface side on an intrinsic Si substrate by rf sputtering. To apply large electric field to the Pd layer, we fabricated a capacitor structure with a polymer film containing an ionic liquid² to form an electric double layer by applying a gate voltage (V_G). Figure shows the temperature (T) dependence of the perpendicular component of the magnetic moment (m_{\perp}) under the application of V_G of 0 V (black), +2.5 V (red), -2.0 V (blue) for sample with t_{Co} =0.24 nm (positive V_G corresponds to the increase of the electron density in the Pd layer.) When Twas sufficiently below the Curie temperature, the V_G -dependent change in m_{\perp} was observed. This

indicates that the induced magnetic moment in the Pd layer could be modulated by $V_{\rm G}$, because only the electron density at the surface of the Pd layer is considered to be controlled by $V_{\rm G}$. The reproducibility of the result was confirmed in similar samples. The $t_{\rm Co}$ dependence of the electric field effect in this system will be also discussed.

This work was supported by Grant-in-aid for Scientific Research (S) from JSPS and the PRESTO program from JST.

¹ D. Chiba *et al.*, *Nature Mater.* **10**, 853 (2011).

² K. Shimamura et al., Appl. Phys. Lett. 100, 122402 (2012).

³ F. J. A. den Broeder et al., J. Appl. Phys. 61, 4317 (1987).