17a-S9-1

フェムト秒レーザー誘起表面プラズモンポラリトンによる 金属表面のナノ格子形成

Nanograting formation on metal surfaces with femtosecond-laser-induced surface plasmon polaritons

東京農工大¹, 京大工ネ理工研² ⁰宮地 悟代¹, 井上 俊茂², 宮崎 健創²

Tokyo Univ. of Agriculture and Technology¹, Inst. of Advanced Energy, Kyoto Univ.²,

[°]Godai Miyaji¹, Toshishige Inoue², and Kenzo Miyazaki²

E-mail: gmiyaji@cc.tuat.ac.jp

はじめに: チタンやステンレス鋼表面に単一パルスアブレーション閾値よりも低いフルーエンス Fのフェムト秒(fs)レーザーパルスを複数パルス照射すると、平均周期間隔が200-400 nmの ナノ周期構造生成が観測される[1]。生成メカニズムの詳細を理解するため、2 ステップのアブレー ションプロセス[2]を利用してナノ格子の形成過程をレーザーの照射条件を変えて調べた。

実験と結果:研磨されたチタンを照射ターゲットとし、Ti:sapphire レーザーシステムから出力さ れる直線偏光のfs レーザーパルス (100 fs、800 nm、10 Hz)を表面に照射した。まず、干渉縞の 周期 A=1440 nm として2ステップのアブレーションプロセスを行ったところ、A/4~360 nm の ナノ格子は生成したものの不均一であり、直線性はよくなかった。干渉パターンを付与した表面 を観察すると、不明瞭な干渉パターンが形成されていたため、次に、2 ビームのfs パルスの干渉 縞 (A~890 nm)のみをターゲット表面に繰り返し照射することにより、ナノ格子を作製した。2 ビームをともに F=50 mJ/cm²とし、パルス数 N=5 および 100 ショット照射して作製したナノ格 子の SEM 画像の例と空間スペクトル分布をそれぞれ Fig.1(a)と(b)に示す。この結果より、Nが増 加すると、A/3~295 nm の均一で直線性の良いナノ格子が形成されることが分かる。以上の結果 は、ナノ格子生成に表面プラズモンポラリトン[3]が寄与していることを示唆しているだけでなく、 チタンのように不明瞭な干渉パターンが形成される媒質にはfs パルスの干渉縞を複数パルス照射

することによって均一なナノ格子 を形成できることを示している。ス テンレス鋼においてもナノ格子の 形成過程を調べるとともに、モデル 計算および電磁界分布の数値計算 を行い、物理過程について議論する。

N. Yasumaru, E. Sentoku, K. Miyazaki and J. Kiuchi, Appl. Surf. Sci. 264, 611 (2013).
K. Miyazaki and G. Miyaji: J. Appl. Phys. 114, 153108 (2013).
G. Miyaji and K. Miyazaki, Opt. Express 16, 16265 (2008).

Fig. 1. SEM image of Ti surface and the frequency spectrum of periodic structure after irradiation of the superimposed number of two-beam fs-laser pulses (a) N = 5 and (b) N = 100 at F = 50 mJ/cm² of each beam. The fs laser polarization direction is horizontal.