17p-A1-6

溶液プロセスでのコロイド量子ドット埋め込み構造の作製

Improvement of infilled colloidal quantum dot film by solution process 東大院工¹、先端研²、^〇大澤惇^{1,2}、星井拓也^{1,2}、王海濱²、久保貴哉²、岡田至崇^{1,2}

The University of Tokyo¹, RCAST²,

^OJun Osawa^{1,2}, Takuya Hoshii^{1,2} Wang Haibin², Takaya Kubo², Yoshitaka Okada^{1,2}. Email: osawa@mbe.rcast.u-tokyo.ac.jp

[はじめに] 溶液プロセスで作製が可能な コロイド量子ドット太陽電池は、低コスト の太陽電池として期待されている。しかし、 コロイド量子ドット層の耐熱安定性が課題 であり、コロイド量子ドットを用いたデバ イスの使用環境や作製プロセスに制限があ る。そこで、本研究では、溶液プロセスを 用いて、Fig.1(b)の様な PbS コロイド量子ド ットの ZnSe による埋め込み(infilling)構造 を作製し、コロイド量子ドット層の耐熱安 定性の改善を試みた。

[作製手法] コロイド量子ドットの埋め込 み構造は、まずガラス基板上に 40mg/ml の PbS コロイド量子ドット層をスピン塗布に て成膜した後、Cetyl trimethyl ammonium bromide (CTAB)を用いてリガンド交換を行 い、Zn(NO₃)₂・6H₂O 溶液、Na₂SeSO₃ 溶液に 交互に浸して、Zn²⁺、Se²を量子ドット表面、

(a)Without infilling (b)With infilling

Fig.1 Structure of colloidal quantum dot (CQD) film.

Fig.3 PL peak shift of CQD films as a function of

anneal temperature.

基板表面に交互吸着させることにより作製 した。

[実験結果] 耐熱安定性の評価として、フ オトルミネッセンス法にてコロイド量子ド ット層のアニールによる発光波長の変化を 調べた。Fig.1(a)のような、通常のコロイド 量子ドット層の場合、アニールを行うとコ ロイド量子ドットが凝集してサイズが大き くなることから、Fig.2(b)のように PL 発光 波長が長波長側にシフトする[1]。一方、 Fig.1(b)のようなコロイド量子ドットの埋 め込み構造では、アニールによる PL 発光波 長のレッドシフトが抑制された(Fig.2(a), Fig.3)。このことから、コロイド量子ドット を埋め込み構造にすることにより、コロイ ド量子ドットの量子サイズ効果の耐熱安定 性を改善できることが分かった。 [1]Kim et al. Nanoscale Research Letters, 7:482(2012)

infilling) after annealing.