Tomographic Micro-Imaging of Buried Layers and Interfaces with 15W X-ray Power

Univ. of Tsukuba¹, NIMS², Jinxing Jiang¹,² and Kenji Sakurai¹,²

E-mail: SAKURAI.Kenji@nims.go.jp

Designing and controlling buried layers and interfaces have been crucial in catalysis, microelectronics, lubrication, photography and many environmental processes[1]. To evaluate and characterize the buried interface, advanced X-ray techniques are promising because of their capability to see the atomic to nano-scale structures along the depth in a non-destructive way[2]. Though conventional X-ray reflectivity does not own the spatial resolution, introducing X-ray reflection tomography is helpful[3]. In the present research, we have developed a new instrument to visualize the buried layers and interfaces with high resolution, by using a micro focus 15W X-ray power source. Figure 1 shows the arrangement of this new X-ray reflection tomography setup. β-filtered X-ray from the micro focus X-ray source hit the sample at an incident angle θ and then form a magnified projection of the sample on an image plate. The sample is rotated at specific step along the φ-axis to have different projections. All projections are used for mathematical image reconstruction. The spatial resolution is limited by the size of X-ray source, 50μm.

Figure 1 X-ray reflection tomography instrument using a micro focus 15W X-ray power source. Inset shows the geometry of the sample stage. Sample is rotated along the φ-axis to have different reflectivity projections which are recorded on an image plate placed 115 mm away.

References: